首頁 > 新能源汽車

開關管MOSFET的功耗分析及優(yōu)化

來源:新能源汽車網
時間:2023-05-10 18:02:03
熱度:

開關管MOSFET的功耗分析及優(yōu)化一、引言MOSFET作為主要的開關功率器件之一,被大量應用于模塊電源。了解MOSFET的損耗組成并對其分析,有利于優(yōu)化MOSFET損耗,提高模塊電

一、引言


MOSFET作為主要的開關功率器件之一,被大量應用于模塊電源。了解MOSFET的損耗組成并對其分析,有利于優(yōu)化MOSFET損耗,提高模塊電源的功率;但是一味的減少MOSFET的損耗及其他方面的損耗,反而會引起更嚴重的EMI問題,導致整個系統(tǒng)不能穩(wěn)定工作。所以需要在減少MOSFET的損耗的同時需要兼顧模塊電源的EMI性能。


二、開關管MOSFET的功耗分析


MOSFET的損耗主要有以下部分組成:


1.通態(tài)損耗;2.導通損耗;3.關斷損耗;4.驅動損耗;5.吸收損耗;


隨著模塊電源的體積減小,需 要將開關頻率進一步提高,進而導致開通損耗和關斷損耗的增加,例如300kHz的驅動頻率下,開通損耗和關斷損耗的比例已經是總損耗主要部分了。


MOSFET導通與關斷過程中都會產生損耗,在這兩個轉換過程中,漏極電壓與漏極電流、柵源電壓與電荷之間的關系如圖1和圖2所示,現(xiàn)以導通轉換過程為例進行分析:


t0-t1區(qū)間:柵極電壓從0上升到門限電壓Uth,開關管為導通,無漏極電流通過這一區(qū)間不產生損耗;


t1-t2區(qū)間:柵極電壓達到Vth,漏極電流ID開始增加,到t2時刻達到值,但是漏源電壓保持截止時高電平不變,從圖1可以看出,此部分有VDS與ID有重疊,MOSFET功耗增大;


t2-t3區(qū)間:從t2時刻開始,漏源電壓VDS開始下降,引起密勒電容效應,使得柵極電壓不能上升而出現(xiàn)平臺,t2-t3時刻電荷量等于Qgd,t3時刻開始漏極電壓下降到值;此部分有VDS與ID有重疊,MOSFET功耗增大


t3-t4區(qū)間:柵極電壓從平臺上升至的驅動電壓(模塊電源一般設定為12V),上升的柵壓使導通電阻進一步減少,MOSFET進入完全導通狀態(tài);此時損耗轉化為導通損耗。

關斷過程與導通過程相似,只不過是波形相反而已;關于MOSFET的導通損耗與關斷損耗的分析過程,有很多文獻可以參考,這里直接引用《張興柱之MOSFET分析》的總結公式如下:



備注:為上升時間, 為開關頻率, 為下降時間,為柵極電荷,為柵極驅動電壓 為MOSFET體二極管損耗。


三、MOSFET的損耗優(yōu)化方法及其利弊關系


1. 通過降低模塊電源的驅動頻率減少MOSFET的損耗[稍微提一下EMI問題及其解決方案]


從MOSFET的損耗分析可以看出,開關電源的驅動頻率越高,導通損耗、關斷損耗和驅動損耗會相應增大,但是高頻化可以使得模塊電源的變壓器磁芯更小,模塊的體積變得更小,所以可以通過開關頻率去優(yōu)化開通損耗、關斷損耗和驅動損耗,但是高頻化卻會引起嚴重的EMI問題。


采用跳頻控制方法,在輕負載情況下,通過降低模塊電源的開關頻率來降低驅動損耗,從而進一步提高輕負載條件下的效率,使得系統(tǒng)在待機工作下,更節(jié)能,進一步提高蓄電池供電系統(tǒng)的工作時間,并且還能夠降低EMI的輻射問題;


2.通過降低、來減少MOSFET的損耗

典型的小功率模塊電源(小于50W)大多采用的電路拓撲結構為反激形式,典型的控制電路如圖3所示;從MOSFET的損耗分析還可以知道:與開 通損耗成正比、與關斷損耗成正比;所以可以通過減少 、來減少MOSFET的損耗,通常情況下,可以減小MOSFET的驅動電阻Rg來減少、時間,但是此優(yōu)化方法卻帶來嚴重的EMI問題;以下舉例說說:


1)Rg采用10Ω的MOSFET驅動電阻,裸機輻射測試結果如下:



2)Rg采用0Ω的驅動電阻,裸機輻射測試結果如下:


從兩種不同的驅動電阻測試結果來看,雖然都能夠通過EN55022的輻射騷擾度的CLASS A等級,但是采用0歐姆的驅動電阻,在水平極化方向測試結果的余量是不足3dB的,該方案設計不能被通過。


3.通過降低吸收電路損耗來減少損耗


在模塊電源的設計過程中,變壓器的漏感總是存在的,采用反激拓撲式結構,往往在MOSFET截止過程中,MOSFET的漏極往往存在著很大的電 壓尖峰,一般情況下,MOSFET的電壓設計余量是足夠承受的,為了提高整體的電源效率,一些電源廠家是沒有增加吸收電路

(吸收電路如圖3標注①RCD吸 收電路和②RC吸收電路)來吸收尖峰電壓的。但是,不注意這些吸收電路的設計往往也是導致EMI設計不合格的主要原因。


1)驅動電阻Rg為27Ω,無RC吸收電路,輻射騷擾度測試結果如下:



2)驅動電阻為27Ω;吸收電路為電阻R和C 5.1Ω 470pF,輻射騷擾度測試結果如下:



從兩種不同的吸收電路方案測試結果來看,不采用吸收電路的方案,是不能通過EN55022輻射騷擾度的CLASS A等級,而采用吸收電路,則可以解決輻射騷擾度實驗不通過的問題,通過不同的RC組合方式可進一步降低輻射騷擾。


四、總結


MOSFET的功耗優(yōu)化工作實際上是一個系統(tǒng)工程,部分優(yōu)化方案甚至會影響EMI的特性變化。上述中,平衡了電源整體效率與EMI特性,從而進一步優(yōu)化了電源參數(shù)。將電源參數(shù)進一步優(yōu)化,更能兼容客戶系統(tǒng),并發(fā)揮真正的電子 系統(tǒng)“心臟”作用,源源不斷的輸送能量。