高中低溫怎么劃分
來源:新能源網(wǎng)
時間:2024-08-17 11:18:57
熱度:
高中低溫怎么劃分【專家解說】:1、太陽能采集
平板集熱器 歷史上早期出現(xiàn)的太陽能裝置,主要為太陽能動力裝置,大部分采用聚光集熱器,只有少數(shù)采用平板集熱器。平板集熱器是在17世紀后期
【專家解說】:1、太陽能采集
平板集熱器
歷史上早期出現(xiàn)的太陽能裝置,主要為太陽能動力裝置,大部分采用聚光集熱器,只有少數(shù)采用平板集熱器。平板集熱器是在17世紀后期發(fā)明的,但直至1960年以后才真正進行深入研究和規(guī)?;瘧谩T谔柲艿蜏乩妙I域,平板集熱器的技術經(jīng)濟性能遠比聚光集熱器好。為了提高效率,降低成本,或者為了滿足特定的使用要求,開發(fā)研制了許多種平板集熱器: 按工質劃分有空氣集熱器和液體集熱器,目前大量使用的是液體集熱器; 按吸熱板芯材料劃分有鋼板鐵管、全銅、全鋁、銅鋁復合、不銹鋼、塑料及其它非金屬集熱器等; 按結構劃分有管板式、扁盒式、管翅式、熱管翅片式、蛇形管式集熱器,還有帶平面反射鏡集熱器和逆平板集熱器等; 按蓋板劃分有單層或多層玻璃、玻璃鋼或高分子透明材料、透明隔熱材料集熱器等。目前,國內外使用比較普遍的是全銅集熱器和銅鋁復合集熱器。銅翅和銅管的結合,國外一般采用高頻焊,國內以往采用介質焊,199S年我國也開發(fā)成功全銅高頻焊集熱器。1937年從加拿大引進銅鋁復合生產(chǎn) 線,通過消化吸收,現(xiàn)在國內已建成十幾條銅鋁復合生產(chǎn)線。 為了減少集熱器的熱損失,可以采用中空玻璃、聚碳酸酯陽光板以及透明蜂窩等作為蓋板材料,但這些 材料價格較高,一時難以推廣應用。
答案補充
真空管集熱器
為了減少平板集熱器的熱損,提高集熱溫度,國際上70年代研制成功真空集熱管,其吸熱體被封閉在高真空的玻璃真空管內,大大提高了熱性能。將若干支真空集熱管組裝在一起,即構成真空管集熱器,為了增加太陽光的采集量,有的在真空集熱管的背部還加裝了反光板。真空集熱管大體可分為全玻璃真空集熱管,玻璃-U型管真空集熱管,玻璃。金屬熱管真空集熱管,直通式真空集熱管和貯熱式真空集熱管。最近,我國還研制成全玻璃熱管真空集熱管和新型全玻璃直通式真空集 熱管。我國自1978年從美國引進全玻璃真空集熱管的樣管以來,經(jīng)20多年的努力,我國已經(jīng)建立了擁有自主知識產(chǎn)權的現(xiàn)代化全玻璃真空集熱管的產(chǎn)業(yè),用于生產(chǎn)集熱管的磁控濺射鍍膜機在百臺以上,產(chǎn)品質量達世 界先進水平,產(chǎn)量雄居世界首位。我國自80年代中期開始研制熱管真空集熱管,經(jīng)過十幾年的努力,攻克了熱壓封等許多技術難關,建立了擁有全部知識產(chǎn)權的熱管真空管生產(chǎn)基地,產(chǎn)品質量達到世界先進水平,生產(chǎn)能力居世界首位。 目前,直通式真空集熱管生產(chǎn)線正在加緊進行建設,產(chǎn)品即將投放市場。
答案補充
聚光集熱器
聚光集熱器主要由聚光器、吸收器和跟蹤系統(tǒng)三大部分組成。按照聚光原理區(qū)分,聚光集熱器基本可分為反射聚光和折射聚光兩大類,每一類中按照聚光器的不同又可分為若干種。為了滿足太陽能利用的要求, 簡化跟蹤機構,提高可靠性,降低成本,在本世紀研制開發(fā)的聚光集熱器品種很多,但推廣應用的數(shù)量遠比平板集熱器少,商業(yè)化程度也低。 在反射式聚光集熱器中應用較多的是旋轉拋物面鏡聚光集熱器(點聚焦)和槽形拋物面鏡聚光集熱器 (線聚焦)。前者可以獲得高溫,但要進行二維跟蹤;后者可以獲得中溫,只要進行一維跟蹤。這兩種聚光集熱 器在本世紀初就有應用,幾十年來進行了許多改進,如提高反射面加工精度,研制高反射材料,開發(fā)高可靠性 跟蹤機構等,現(xiàn)在這兩種拋物面鏡聚光集熱器完全能滿足各種中、高溫太陽能利用的要求,但由于造價高,限制了它們的廣泛應用。
答案補充
70年代,國際上出現(xiàn)一種“復合拋物面鏡聚光集熱器”(CPC),它由二片槽形拋物面反射鏡組成,不需要跟蹤太陽,最多只需要隨季節(jié)作稍許調整,便可聚光,獲得較高的溫度。其聚光比一般在10以下,當聚光比在3以下時可以固定安裝,不作調整。當時,不少人對CPC評價很高,甚至認為是太陽能熱利用技術的一次重大突破,預言將得到廣泛應用。但幾十年過去了,CPC仍只是在少數(shù)示范工程中得到應用,并沒有象平板集 熱器和真空管集熱器那樣大量使用。我國不少單位在七八十年代曾對CPC進行過研制,也有少量應用,但現(xiàn)在基本都已停用。
答案補充
其它反射式聚光器還有圓錐反射鏡、球面反射鏡、條形反射鏡、斗式槽形反射鏡、平面。拋物面鏡聚光器等。此外,還有一種應用在塔式太陽能發(fā)電站的聚光鏡--定日鏡。定日鏡由許多平面反射鏡或曲面反射鏡組成,在計算機控制下這些反射鏡將陽光都反射至同一吸收器上,吸收器可以達到很高的溫度,獲得很大的能量。
答案補充
利用光的折射原理可以制成折射式聚光器,歷史上曾有人在法國巴黎用二塊透鏡聚集陽光進行熔化金屬的表演。有人利用一組透鏡并輔以平面鏡組裝成太陽能高溫爐。顯然,玻璃透鏡比較重,制造工藝復雜,造價高,很難做得很大。所以,折射式聚光器長期沒有什么發(fā)展。70年代,國際上有人研制大型菲涅耳透鏡,試圖用于制作太陽能聚光集熱器。菲涅耳透鏡是平面化的聚光鏡,重量輕,價格比較低,也有點聚焦和線聚焦之分,一般由有機玻璃或其它透明塑料制成,也有用玻璃制作的,主要用于聚光太陽電池發(fā)電系統(tǒng)。
答案補充
我國從70年代直至90年代,對用于太陽能裝置的菲涅耳透鏡開展了研制。有人采用模壓方法加工大面 積的柔性透明塑料菲涅耳透鏡,也有人采用組合成型刀具加工直徑1.5m的點聚焦菲涅耳透鏡,結果都不大理想。近來,有人采用模壓方法加工線性玻璃菲涅耳透鏡,但精度不夠,尚需提高。 還有兩種利用全反射原理設計的新型太陽能聚光器,雖然尚未獲得實際應用,但具有一定啟發(fā)性。一種是光導纖維聚光器,它由光導纖維透鏡和與之相連的光導纖維組成,陽光通過光纖透鏡聚焦后由光纖傳至使 用處。另一種是熒光聚光器,它實際上是一種添加熒光色素的透明板(一般為有機玻璃),可吸收太陽光中與熒光吸收帶波長一致的部分,然后以比吸收帶波長更長的發(fā)射帶波長放出熒光。放出的熒光由于板和周圍介質的差異,而在板內以全反射的方式導向平板的邊緣面,其聚光比取決于平板面積和邊緣面積之比,很容易 達到10一100,這種平板對不同方向的入射光都能吸收,也能吸收散射光,不需要跟蹤太陽。
答案補充
太陽能轉換
太陽能是一種輻射能,具有即時性,必須即時轉換成其它形式能量才能利用和貯存。將太陽能轉換成不同形式的能量需要不同的能量轉換器,集熱器通過吸收面可以將太陽能轉換成熱能,利用光伏效應太陽電池可以將太陽能轉換成電能,通過光合作用植物可以將太陽能轉換成生物質能,等等。原則上,太陽能可以直接或間接轉換成任何形式的能量,但轉換次數(shù)越多,最終太陽能轉換的效率便越低。
答案補充
太陽能-熱能轉換
黑色吸收面吸收太陽輻射,可以將太陽能轉換成熱能,其吸收性能好,但輻射熱損失大,所以黑色吸收面不是理想的太陽能吸收面。選擇性吸收面具有高的太陽吸收比和低的發(fā)射比,吸收太陽輻射的性能好,且輻射熱損失小,是比較理想的太陽能吸收面。這種吸收面由選擇性吸收材料制成,簡稱為選擇性涂層。它是在本世紀40年代提出的,1955年達到實用要求,70年代以后研制成許多新型選擇性涂層并進行批量生產(chǎn)和推廣應用,目前已研制成上百種選擇性涂層。我國自70年代開始研制選擇性涂層,取得了許多成果,并在太陽集熱器上廣泛使用,效果十分顯著。
答案補充
太陽能-電能轉換
電能是一種高品位能量,利用、傳輸和分配都比較方便。將太陽能轉換為電能是大規(guī)模利用太陽能的重要技術基礎,世界各國都十分重視,其轉換途徑很多,有光電直接轉換,有光熱電間接轉換等。這里重點介紹光電直接轉換器件--太陽電池。世界上,1941年出現(xiàn)有關硅太陽電池報道,1954年研制成效率達6%的單晶硅太陽電池,1958年太陽電池應用于衛(wèi)星供電。在70年代以前,由于太陽電池效率低,售價昂貴,主要應用在空間。70年代以后,對太陽電池材料、結構和工藝進行了廣泛研究,在提高效率和降低成本方面取得較大進展,地面應用規(guī)模逐漸擴大,但從大規(guī)模利用太陽能而言,與常規(guī)發(fā)電相比,成本仍然大高。
答案補充
目前,世界上太陽電他的實驗室效率最高水平為:單晶硅電池24%(4cm2),多晶硅電池18.6%(4cm2), InGaP/GaAs雙結電池30.28%(AM1),非晶硅電池14.5%(初始)、12.8(穩(wěn)定),碲化鎘電池15.8%, 硅帶電池14.6%,二氧化鈦有機納米電池10.96%。
我國于1958年開始太陽電池的研究,40多年來取得不少成果。目前,我國太陽電他的實驗室效率最高水平為:單晶硅電池20.4%(2cm×2cm),多晶硅電池14.5%(2cm×2cm)、12%(10cm×10cm),GaAs電池 20.1%(lcm×cm),GaAs/Ge電池19.5%(AM0),CulnSe電池9%(lcm×1cm),多晶硅薄膜電池13.6% (lcm×1cm,非活性硅襯底),非晶硅電池8.6%(10cm×10cm)、7.9%(20cm×20cm)、6.2%(30cm×30cm), 二氧化鈦納米有機電池10%(1cm×1cm)。
答案補充
太陽能-氫能轉換
氫能是一種高品位能源。太陽能可以通過分解水或其它途徑轉換成氫能,即太陽能制氫,其主要方法如下:
1、太陽能電解水制氫。電解水制氫是目前應用較廣且比較成熟的方法,效率較高(75%-85%),但耗電大,用常規(guī)電制氫,從能量利用而言得不償失。所以,只有當太陽能發(fā)電的成本大幅度下降后,才能實現(xiàn)大規(guī)模電解水制氫。
答案補充
2、太陽能熱分解水制氫。將水或水蒸汽加熱到3000K以上,水中的氫和氧便能分解。這種方法制氫效率高,但需要高倍聚光器才能獲得如此高的溫度,一般不采用這種方法制氫。
3、太陽能熱化學循環(huán)制氫。為了降低太陽能直接熱分解水制氫要求的高溫,發(fā)展了一種熱化學循環(huán)制氫方法,即在水中加入一種或幾種中間物,然后加熱到較低溫度,經(jīng)歷不同的反應階段,最終將水分解成氫和氧,而中間物不消耗,可循環(huán)使用。熱化學循環(huán)分解的溫度大致為900-1200K,這是普通旋轉拋物面鏡聚光器比較容易達到的溫度,其分解水的效率在17.5%-75.5%。存在的主要問題是中間物的還原,即使按99.9%-99. 99%還原,也還要作 0.1%-0.01%的補充,這將影響氫的價格,并造成環(huán)境污染。
答案補充
4、太陽能光化學分解水制氫。這一制氫過程與上述熱化學循環(huán)制氫有相似之處,在水中添加某種光敏物質作催化劑,增加對陽光中長 波光能的吸收,利用光化學反應制氫。日本有人利用碘對光的敏感性,設計了一套包括光化學、熱電反應的綜 合制氫流程,每小時可產(chǎn)氫97升,效率達10%左右。
5、太陽能光電化學電池分解水制氫。1972年,日本本多健一等人利用n型二氧化鈦半導體電極作陽極,而以鉑黑作陰極,制成太陽能光電化學電池,在太陽光照射下,陰極產(chǎn)生氫氣,陽極產(chǎn)生氧氣,兩電極用導線連接便有電流通過,即光電化學電池在太陽光的照射下同時實現(xiàn)了分解水制氫、制氧和獲得電能。這一實驗結果引起世界各國科學家高度重視, 認為是太陽能技術上的一次突破。但是,光電化學電池制氫效率很低,僅0.4%,只能吸收太陽光中的紫外光和近紫外光,且電極易受腐蝕,性能不穩(wěn)定,所以至今尚未達到實用要求。
答案補充
6、太陽光絡合催化分解水制氫。從1972年以來,科學家發(fā)現(xiàn)三聯(lián)毗啶釘絡合物的激發(fā)態(tài)具有電子轉移能力,并從絡合催化電荷轉移反應,提出利用這一過程進行光解水制氫。這種絡合物是一種催化劑,它的作用是吸收光能、產(chǎn)生電荷分離、電荷轉移和集結,并通過一系列偶聯(lián)過程,最終使水分解為氫和氧。絡合催化分解水制氫尚不成熟,研究工作正在繼續(xù)進行。
7、生物光合作用制氫。40多年前發(fā)現(xiàn)綠藻在無氧條件下,經(jīng)太陽光照射可以放出氫氣;十多年前又發(fā)現(xiàn),蘭綠藻等許多藻類在無氧環(huán)境中適應一段時間,在一定條件下都有光合放氫作用。目前,由于對光合作用和藻類放氫機理了解還不夠,藻類放氫的效率很低,要實現(xiàn)工程化產(chǎn)氫還有相當大的距離。據(jù)估計,如藻類光合作用產(chǎn)氫效率提高到10%,則每天每平方米藻類可產(chǎn)氫9克分子,用5萬平方公里接受的太陽能,通過光合放氫工程即可滿足美國的全部燃料需要。
答案補充
太陽能-生物質能轉換
通過植物的光合作用,太陽能把二氧化碳和水合成有機物(生物質能)并放出氧氣。光合作用是地球上最大規(guī)模轉換太陽能的過程,現(xiàn)代人類所用燃料是遠古和當今光合作用固定的太陽能,目前,光合作用機理尚不完全清楚,能量轉換效率一般只有百分之幾,今后對其機理的研究具有重大的理論意義和實際意義。
答案補充
太陽能-機械能轉換
20世紀初,俄國物理學家實驗證明光具有壓力。20年代,前蘇聯(lián)物理學家提出,利用在宇宙空間中巨大的太陽帆,在陽光的壓力作用下可推動宇宙飛船前進,將太陽能直接轉換成機械能??茖W家估計,在未來10~20年內,太陽帆設想可以實現(xiàn)。通常,太陽能轉換為機械能,需要通過中間過程進行間接轉換。
答案補充
太陽能貯存
地面上接受到的太陽能,受氣候、晝夜、季節(jié)的影響,具有間斷性和不穩(wěn)定性。因此,太陽能貯存十分必要,尤其對于大規(guī)模利用太陽能更為必要。太陽能不能直接貯存,必須轉換成其它形式能量才能貯存。大容量、長時間、經(jīng)濟地貯存太陽能,在技術上比較困難。本世紀初建造的太陽能裝置幾乎都不考慮太陽能貯存問題,目前太陽能貯存技術也還未成熟,發(fā)展比較緩慢,研究工作有待加強。
答案補充
熱能貯熱
1、顯熱貯存。利用材料的顯熱貯能是最簡單的貯能方法。在實際應用中,水、沙、石子、土壤等都可作為貯能材料,其中水的比熱容最大,應用較多。七八十年代曾有利用水和土壤進行跨季節(jié)貯存太陽能的報道。但材料顯熱較小,貯能量受到一定限制。
2、潛熱貯存。利用材料在相變時放出和吸入的潛熱貯能,其貯能量大,且在溫度不變情況下放熱。在太陽能低溫貯存中常用含結晶水的鹽類貯能,如10水硫酸鈉/水氯化鈣、12水磷酸氫鈉等。但在使用中要解決過冷和分層問題,以保證工作溫度和使用壽命。太陽能中溫貯存溫度一般在100℃以上、500℃以下,通常在300℃左右。適宜于中溫貯存的材料有:高壓熱水、有機流體、共晶鹽等。太陽能高溫貯存溫度一般在500℃以上,目前正在試驗的材料有:金屬鈉、熔融鹽等。1000℃以上極高溫貯存,可以采用氧化鋁和氧化鍺耐火球。
答案補充
3、化學貯熱。利用化學反應貯熱,貯熱量大,體積小,重量輕,化學反應產(chǎn)物可分離貯存,需要時才發(fā)生放熱反應,貯存時間長。 真正能用于貯熱的化學反應必須滿足以下條件:反應可逆性好,無副反應;反應迅速;反應生成物易分離且能穩(wěn)定貯存;反應物和生成物無毒、無腐蝕、無可燃性;反應熱大,反應物價格低等,目前已篩選出一些化學吸熱反應能基本滿足上述條件,如Ca(OH)2的熱分解反應,利用上述吸熱反應貯存熱能,用熱時則通過放熱反應釋放熱能。但是,Ca(OH)2在大氣壓脫水反應溫度高于500℃,利用太陽能在這一溫度下實現(xiàn)脫水十分困難,加入催化劑可降低反應溫度,但仍相當高。所以,對化學反應貯存熱能尚需進行深入研究,一時難以實用。其它可用于貯熱的化學反應還有金屬氫化物的熱分解反應、硫酸氫銨循環(huán)反應等。
答案補充
4、塑晶貯熱。1984年,美國在市場上推出一種塑晶家庭取暖材料。塑晶學名為新戊二醇(NPG),它和液晶相似,有晶體的三維周期性,但力學性質象塑料。它能在恒定溫度下貯熱和放熱,但不是依靠固一液相變貯熱,而是通過塑晶分子構型發(fā)生固-固相變貯熱。塑晶在恒溫44℃時,白天吸收太陽能而貯存熱能,晚上則放出白天貯存的熱能。 美國對NPG的貯熱性能和應用進行了廣泛的研究,將塑晶熔化到玻璃和有機纖維墻板中可用于貯熱,將調整配比后的塑晶加入玻璃和纖維制成的墻板中,能制冷降溫。我國對塑晶也開展了一些實驗研究,但尚未實際應用。
答案補充
5、太陽池貯熱。太陽池是一種具有一定鹽濃度梯度的鹽水池,可用于采集和貯存太陽能。由于它簡單、造價低和宜于大規(guī)模使用,引起人們的重視。60年代以后,許多國家對太陽池開展了研究,以色列還建成三座太陽池發(fā)電站。70年代以后,我國對太陽池也開展了研究,初步得到一些應用。
答案補充
電能貯存
電能貯存比熱能貯存困難,常用的是蓄電池,正在研究開發(fā)的是超導貯能。世界上鉛酸蓄電池的發(fā)明已有100多年的歷史,它利用化學能和電能的可逆轉換,實現(xiàn)充電和放電。鉛酸蓄電池價格較低,但使用壽命短,重量大,需要經(jīng)常維護。近來開發(fā)成功少維護、免維護鉛酸蓄電池,使其性能有一定提高。目前,與光伏發(fā)電系統(tǒng)配套的貯能裝置,大部分為鉛酸蓄電池。1908年發(fā)明鎳-銅、鎳-鐵堿性蓄電池,其使用維護方便,壽命長,重量輕,但價格較貴,一般在貯能量小的情況下使用。 現(xiàn)有的蓄電池貯能密度較低,難以滿足大容量、長時間貯存電能的要求。新近開發(fā)的蓄電池有銀鋅電池、 鉀電池、鈉硫電池等。某些金屬或合金在極低溫度下成為超導體,理論上電能可以在一個超導無電阻的線圈內貯存無限長的時間。這種超導貯能不經(jīng)過任何其它能量轉換直接貯存電能,效率高,起動迅速,可以安裝在任何地點,尤其是消費中心附近,不產(chǎn)生任何污染,但目前超導貯能在技術上尚不成熟,需要繼續(xù)研究開發(fā)。
答案補充
氫能貯存
氫可以大量、長時間貯存。它能以氣相、液相、固相(氫化物)或化合物(如氨、甲醇等)形式貯存。 氣相貯存:貯氫量少時,可以采用常壓濕式氣柜、高壓容器貯存;大量貯存時,可以貯存在地下貯倉、由不 漏水土層復蓋的含水層、鹽穴和人工洞穴內。 液相貯存:液氫具有較高的單位體積貯氫量,但蒸發(fā)損失大。將氫氣轉化為液氫需要進行氫的純化和壓縮,正氫-仲氫轉化,最后進行液化。液氫生產(chǎn)過程復雜,成本高,目前主要用作火箭發(fā)動機燃料。 固相貯氫:利用金屬氫化物固相貯氫,貯氫密度高,安全性好。目前,基本能滿足固相貯氫要求的材料主要是稀土系合金和鈦系合金。金屬氫化物貯氫技術研究已有30余年歷史,取得了不少成果,但仍有許多課題有待研究解決。我國對金屬氫化物貯氫技術進行了多年研究,取得一些成果,目前研究開發(fā)工作正在深入。
答案補充
機械能貯存
太陽能轉換為電能,推動電動水泵將低位水抽至高位,便能以位能的形式貯存太陽能;太陽能轉換為熱 能,推動熱機壓縮空氣,也能貯存太陽能。但在機械能貯存中最受人關注的是飛輪貯能。早在50年代有人提出利用高速旋轉的飛輪貯能設想,但一直沒有突破性進展。近年來,由于高強度碳纖維和玻璃纖維的出現(xiàn),用其制造的飛輪轉速大大提高,增加了單位質量的動能貯量;電磁懸浮、超導磁浮技術 的發(fā)展,結合真空技術,極大地降低了摩擦阻力和風力損耗;電力電子的新進展,使飛輪電機與系統(tǒng)的能量交換更加靈活。所以,近來飛輪技術已成為國際上研究熱點,美國有20多個單位從事這項研究工作,已研制成貯能20kWh飛輪,正在研制5MWh~100MWh超導飛輪。我國已研制成貯能0.3kwh的小型實驗飛輪。 在太陽能光伏發(fā)電系統(tǒng)中,飛輪可以代替蓄電池用于蓄電。
答案補充
太陽能傳輸
太陽能不象煤和石油一樣用交通工具進行運輸,而是應用光學原理,通過光的反射和折射進行直接傳輸,或者將太陽能轉換成其它形式的能量進行間接傳輸。 直接傳輸適用于較短距離,基本上有三種方法:通過反射鏡及其它光學元件組合,改變陽光的傳播方向,達到用能地點;通過光導纖維,可以將入射在其一端的陽光傳輸?shù)搅硪欢耍瑐鬏敃r光導纖維可任意彎曲;采用表面鍍有高反射涂層的光導管,通過反射可以將陽光導入室內。間接傳輸適用于各種不同距離。將太陽能轉換為熱能,通過熱管可將太陽能傳輸?shù)绞覂?;將太陽能轉換為氫能或其它載能化學材料,通過車輛或管道等可輸送到用能地點;空間電站將太陽能轉換為電能,通過微波或激光將電能傳輸?shù)降孛?。太陽能傳輸包含許多復雜的技術問題,應認真進行研究,這樣才能更好地利用太陽能。
-
天然氣越來越貴了,請使用過壁掛爐的朋友談談經(jīng)驗,怎樣才能既取暖又省氣,人不在家的時候是關了省氣呢,還是調到低溫省氣。2024-08-17
-
美國第六代多昵爾低溫等離子消融術怎么樣2024-08-17
-
有誰知道壁掛爐供暖低溫運行每小時要用多少煤氣?2024-08-17
-
請教一下,低溫多效海水淡化裝置是負壓操作嗎?第一效蒸發(fā)器中蒸汽的壓力和溫度 一般是多少?。?急 急 謝2024-08-17
-
熱能工程 工程熱物理 制冷及低溫工程 區(qū)別2024-08-17
-
請問您院有美國低溫等離子消融術治療慢性咽炎嗎?2024-08-17
-
天然氣壁掛爐最低溫度怎么是30度?無法調低2024-08-17
-
什么是低溫等離子消融術2024-08-17
-
有誰知道國家是否對室內空調使用的最低溫度作了限制?是什么限制?2024-08-17
-
合成氨為有效提高氫氣轉化率,實際生產(chǎn)中宜采取的措施有 A減低溫度 B最適合催化劑活性的適當高溫2024-08-17
-
低溫絕熱的液化天然LNG氣瓶用閥門是否需要用液化天然氣專用閥門,該專用閥門是否是左旋的2024-08-17
-
聚醋酸乙烯乳液在低溫環(huán)境下會產(chǎn)生哪些變化2024-08-17
-
哪個單位可以做煤炭低溫干餾指標的化驗2024-08-17
-
希臘雅典的年平均氣溫和最低溫度是多少2024-08-17
-
現(xiàn)在國內的液化天然氣(LNG)行業(yè)或者低溫行業(yè)需要什么樣的人才?江蘇工資基本能到多少?2024-08-17