首頁(yè) > 學(xué)術(shù)論文

基于ABS和DNV規(guī)范的某風(fēng)電安裝船屈服強(qiáng)度和屈曲強(qiáng)度有限元分析

來(lái)源:論文學(xué)術(shù)網(wǎng)
時(shí)間:2024-08-18 19:03:06
熱度:

基于ABS和DNV規(guī)范的某風(fēng)電安裝船屈服強(qiáng)度和屈曲強(qiáng)度有限元分析【摘要】:由于計(jì)算機(jī)軟硬件技術(shù)的飛速發(fā)展,船舶設(shè)計(jì)的趨勢(shì)正在發(fā)生變化,從原來(lái)的基于規(guī)范設(shè)計(jì)向基于結(jié)構(gòu)分析的設(shè)計(jì)轉(zhuǎn)變。

【摘要】:由于計(jì)算機(jī)軟硬件技術(shù)的飛速發(fā)展,船舶設(shè)計(jì)的趨勢(shì)正在發(fā)生變化,從原來(lái)的基于規(guī)范設(shè)計(jì)向基于結(jié)構(gòu)分析的設(shè)計(jì)轉(zhuǎn)變。盡管基于結(jié)構(gòu)分析的設(shè)計(jì)方法越趨成熟,有限元船體結(jié)構(gòu)分析也十分可靠,但是規(guī)范設(shè)計(jì)法,經(jīng)過(guò)幾個(gè)世紀(jì)的發(fā)展完善和實(shí)踐證明,包含了及其完善深刻的海洋學(xué)內(nèi)容,地位不可取代。本文的目的是結(jié)合以上兩種設(shè)計(jì)方法,考慮所有在船舶壽命期內(nèi)影響其結(jié)構(gòu)安全及性能的因素,從而獲得最優(yōu)化的設(shè)計(jì)方案,既滿足結(jié)構(gòu)設(shè)計(jì)所要滿足的性能,又具有足夠的安全性。 本文結(jié)合運(yùn)用了設(shè)計(jì)規(guī)范和有限元分析技術(shù)。規(guī)范用于“載荷計(jì)算”和“分析結(jié)果校核”部分,有限元法用于“施加載荷”和“結(jié)構(gòu)強(qiáng)度分析“部分。.施加在結(jié)果上載荷包括結(jié)構(gòu)自重、貨物(風(fēng)機(jī)塔筒)重量、靜水壓力和波浪載荷。結(jié)構(gòu)強(qiáng)度的校核分析基于有限元軟件;結(jié)構(gòu)載荷計(jì)算與分析規(guī)范采用ABS和DNV。 基于結(jié)構(gòu)分析規(guī)范,本文考慮了兩種典型工況:一種是滿載工況,最大吃水;另一種是空載工況,最小吃水。均采用有限元方法進(jìn)行了分析。 在計(jì)算結(jié)構(gòu)載荷時(shí),每種工況下的載荷均采用ABS和DNV的規(guī)范分別計(jì)算。 在有限元建模時(shí),為了結(jié)構(gòu)響應(yīng)更為準(zhǔn)確,采用了完整的全船模型。 在施加載荷時(shí),采用了ANSYS的APDL語(yǔ)言,編輯載荷/壓力的表格進(jìn)行加載。 在強(qiáng)度校核時(shí),給出了結(jié)構(gòu)的各項(xiàng)響應(yīng),例如應(yīng)力和扭曲變形,并將之與規(guī)范中的許用值比較。由于該風(fēng)電安裝船是由散貨船改裝而來(lái),因此適用于ABS和DNV的相關(guān)規(guī)范。 【關(guān)鍵詞】:船舶結(jié)構(gòu)設(shè)計(jì) 風(fēng)電安裝船 APDL 屈服強(qiáng)度 屈曲強(qiáng)度
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:U674.37
【目錄】:
  • ABSTRACT5-6
  • 摘要6-10
  • 1 CHAPTER 1 INTRODUCTION10-22
  • 1.1 What is OWTIS10
  • 1.2 Purpose and Significance of Current Research Work10-11
  • 1.3 Marine Structural Design Approaches11-12
  • 1.3.1 Design by Rules11
  • 1.3.2 Design by Analysis11-12
  • 1.3.3 Design by Performance Standards12
  • 1.4 Design Approaches used in the Current Work12-13
  • 1.5 Yielding and Buckling Strength13-15
  • 1.6 Literature Survey15-20
  • 1.7 Objectives and Scope of Current Work20-21
  • 1.8 Organization of the Thesis Report21-22
  • 2 CHAPTER 2 SHIP LOADS AND ANALYSIS TYPES22-34
  • 2.1 Classification of Loads22-23
  • 2.1.1 General Description22-23
  • 2.2 Environmental Loading Consideration23-28
  • 2.2.1 Wind Forces23-24
  • 2.2.2 Current Forces24
  • 2.2.3 Wave Loads24-26
  • 2.2.4 Diffraction Theory26-27
  • 2.2.5 The Wave Force Equation (WFE)27-28
  • 2.3 Ship Structure Analysis Techniques28-29
  • 2.4 Rules laid down by classification societies29-30
  • 2.5 Finite element Analysis (FEA)30-34
  • 2.5.1 Types of Finite Element Analysis Performed31
  • 2.5.2 Yielding Strength Analysis31-32
  • 2.5.3 Yielding Strength Criteria32-33
  • 2.5.4 Buckling Strength Analysis33
  • 2.5.5 Buckling Strength Criteria33-34
  • 3 CHAPTER 3 SHIP STRUCTURE STRENGTH34-68
  • 3.1 Introduction34
  • 3.2 Modes of Failure34-35
  • 3.3 Ship Structural Stresses35-39
  • 3.3.1 Stresses under Static Loading in Still Water35-39
  • 3.4 Hull Girder Stress39-40
  • 3.4.1 Primary Direct Stress39-40
  • 3.4.2 Instability Issues40
  • 3.5 Finite Element Analysis40-51
  • 3.5.1 Development of Finite Element Shell Model of the Ship41-48
  • 3.5.2 Selection of Suitable Elements Types48-49
  • 3.5.3 Boundary Conditions49-51
  • 3.6 Loads Calculations51
  • 3.7 ABS Rule Load Calculations51-62
  • 3.7.1 Hull Girder Loads Calculation51-52
  • 3.7.2 Still Water Loads52
  • 3.7.3 Wave Induced Loads52-53
  • 3.7.4 External Pressure Calculations53-62
  • 3.8 DNV Rule Load Calculations62-64
  • 3.8.1 Hull Girder Loads Calculation62
  • 3.8.2 Still Water Loads62
  • 3.8.3 Wave Induced Loads62-63
  • 3.8.4 External Pressure Calculations63-64
  • 3.9 Internal Pressure Calculations ABS & DNV Rules (Ballast/Fuel/Fresh Water/Waste Water etc Tanks)64-65
  • 3.10 Deck Loads (ABS & DNV Rules)65-66
  • 3.11 Crane Loads (ABS & DNV Rules)66
  • 3.12 Load Cases Application66-68
  • 4 CHAPTER 4 ANALYSIS & RESULTS68-118
  • 4.1 Introduction68
  • 4.2 OWTIS Specifications68
  • 4.3 General Arrangement, Lines Plan68-69
  • 4.4 3D Shell Model Generation69-70
  • 4.5 Application of Loads70-77
  • 4.5.1 Application of External Sea Pressures70-74
  • 4.5.2 Application of Internal Tank Pressures74-75
  • 4.5.3 Application of Crane Loads75
  • 4.5.4 Application of Decks Loads75-77
  • 4.6 Analysis as per ABS Rules77-107
  • 4.6.1 Load Case ABS 9.5 PH1 (Pure Sagging)77-80
  • 4.6.2 Load Case ABS 9.5 PH2 (Pure Hogging)80-82
  • 4.6.3 Load Case ABS 9.5 PF1 (Sagging)82-85
  • 4.6.4 Load Case ABS 9.5 PF2 (Hogging)85-88
  • 4.6.5 Load Case ABS 9.5 PR1 (Maximum Roll)88-90
  • 4.6.6 Load Case ABS 9.5 PR2 (Maximum Roll)90-92
  • 4.6.7 Load Case ABS 9.5 PP1 (Maximum External Pressure)92-95
  • 4.6.8 Load Case ABS 9.5 PP2 (Maximum External Pressure)95-97
  • 4.6.9 Load Case ABS 4.5 PH1 (Pure Sagging)97-98
  • 4.6.10 Load Case ABS 4.5 PH2 (Pure Hogging)98-100
  • 4.6.11 Load Case ABS 4.5 PF1 (Sagging)100-101
  • 4.6.12 Load Case ABS 4.5 PF2 (Hogging)101-102
  • 4.6.13 Load Case ABS 4.5 PR1 (Maximum Roll)102-103
  • 4.6.14 Load Case ABS 4.5 PR2 (Maximum Roll)103-105
  • 4.6.15 Load Case ABS 4.5 PP1 (Maximum External Pressure)105-106
  • 4.6.16 Load Case ABS 4.5 PP2 (Maximum External Pressure)106-107
  • 4.7 Analysis as per DNV Rules107-112
  • 4.7.1 Load Case DNV 9.5 (Full Load Condition)107-109
  • 4.7.2 Load Case DNV 4.5 (Normal Ballast Condition)109-112
  • 4.8 Results112-113
  • 4.9 Determination of Critical Rule Stresses113-116
  • 4.9.1 Determination of Allowable Yielding Stresses from ABS Rules113
  • 4.9.2 Determination of Allowable Yielding Stresses from DNV Rules113
  • 4.9.3 Determination of Allowable Buckling Stress using ABS Rules113-115
  • 4.9.4 Determination of Allowable Buckling Stress using DNV Rules115-116
  • 4.10 Comparison116-118
  • 4.10.1 Comparison of FEA and Critical Stresses as per ABS Rules116-117
  • 4.10.2 Comparison of FEA and Critical Stresses as per DNV Rules117
  • 4.10.3 Conclusion117-118
  • ConCLUDING REMARKS AND FUTURERECOMMENDATIONS118-120
  • Concluding Remarks118
  • Recommendations for Future Work118-120
  • REFERENCES120-124
  • ACKNOWLEDGEMENTS124


您可以在本站搜索以下學(xué)術(shù)論文文獻(xiàn)來(lái)了解更多相關(guān)內(nèi)容

板的彈-塑性屈曲強(qiáng)度    顏少榮,高軒能,孫祖龍

焊接圓柱殼屈曲強(qiáng)度的敏感因子及可靠性分析    查煜峰

不同規(guī)范的焊接圓柱殼屈曲強(qiáng)度實(shí)驗(yàn)比較及可靠性分析    查煜峰

川江及三峽庫(kù)區(qū)標(biāo)準(zhǔn)型載貨汽車滾裝船船底板屈曲強(qiáng)度研究    余金生,張文華

水下爆炸載荷作用下受損加肋圓柱殼的剩余屈曲強(qiáng)度計(jì)算    馮剛,朱錫,張振華

薄板梁腹板超臨界屈曲強(qiáng)度的研究    唐志祥

縫紉對(duì)復(fù)合材料層合板分層屈曲的影響    魏玉卿,陳斌

基于共同規(guī)范的散貨船屈曲強(qiáng)度評(píng)估    陳煒;張少雄;

波形鋼腹板的設(shè)計(jì)方法    黃琪;

復(fù)合加勁方鋼管混凝土柱的承載力與制作方案分析    成戎;王志浩;

海洋平臺(tái)結(jié)構(gòu)的屈曲強(qiáng)度分析    王雪飛;秦太驗(yàn);段夢(mèng)蘭;

深水半潛平臺(tái)框架強(qiáng)度分析研究    劉成名;李洛東;梁園華;陳瑞峰;林鐘明;

考慮溫度效應(yīng)的新型鋼塑復(fù)合管屈服與失穩(wěn)分析    黃學(xué)偉;蔡力勛;李想;

鋼筒倉(cāng)結(jié)構(gòu)中環(huán)梁的屈曲強(qiáng)度設(shè)計(jì)準(zhǔn)則    滕錦光;趙陽(yáng);

鋼筒倉(cāng)轉(zhuǎn)折連接的試驗(yàn)研究    趙陽(yáng);滕錦光;

張拉整體塔結(jié)構(gòu)安全性分析    張立平;

薄殼結(jié)構(gòu)非線性屈曲有限元分析    嵇曉宇;徐兵;郁向東;楊玉明;

腘繩肌肌腱重建膝前十字韌帶的研究進(jìn)展    黃燎原;徐榮明;朱文杰;

爆炸沖擊波處理消除焊接殘余應(yīng)力技術(shù)的研究及其在鋼鐵行業(yè)的應(yīng)用    李榮鋒;

英國(guó)建筑鋼結(jié)構(gòu)標(biāo)準(zhǔn)中受彎和壓彎構(gòu)件的穩(wěn)定設(shè)計(jì)    陳驥;

HCSR箭在弦上 業(yè)界應(yīng)枕戈以待    記者 甘豐錄

鋼箱—混凝土組合梁結(jié)構(gòu)行為試驗(yàn)研究與分析    莫時(shí)旭

直桿的撞擊屈曲及其應(yīng)力波效應(yīng)的實(shí)驗(yàn)和理論研究    韓志軍

含腐蝕損傷船體結(jié)構(gòu)屈曲評(píng)估方法研究    張巖

計(jì)及結(jié)構(gòu)彈性效應(yīng)的砰擊載荷與響應(yīng)    閆發(fā)鎖

輕量化船舶結(jié)構(gòu)極限強(qiáng)度研究    尚高峰

集裝箱船船體結(jié)構(gòu)極限強(qiáng)度研究    師桂杰

雙殼油船結(jié)構(gòu)屈曲強(qiáng)度分析研究    張培濤

基于協(xié)調(diào)共同規(guī)范的散貨船屈服和屈曲強(qiáng)度直接計(jì)算研究    張小卉

深水半潛平臺(tái)全壽命期結(jié)構(gòu)健康狀態(tài)管理研究    李卓帥

基于油船共同結(jié)構(gòu)規(guī)范的屈曲和疲勞強(qiáng)度研究    劉祺

船體板的屈曲和極限強(qiáng)度分析    李雪良

縱向及橫向載荷作用下的骨材側(cè)傾穩(wěn)定性研究    林杰

基于ABS和DNV規(guī)范的某風(fēng)電安裝船屈服強(qiáng)度和屈曲強(qiáng)度有限元分析    Adil Farooq

腐蝕損傷船體結(jié)構(gòu)屈曲強(qiáng)度評(píng)估方法研究與實(shí)現(xiàn)    楊萬(wàn)鵬

板架結(jié)構(gòu)穩(wěn)定性綜合分析及其計(jì)算程序系統(tǒng)的研制    李衛(wèi)華

倉(cāng)壁柱承鋼筒倉(cāng)結(jié)構(gòu)的穩(wěn)定性能與強(qiáng)度的研究    俞激

  1. 基于PROFIBUS的海上風(fēng)電安裝船升降控制系統(tǒng)研究
    2024-08-18
  2. 3MW風(fēng)電機(jī)組的載荷計(jì)算與輪轂強(qiáng)度分析
    2024-08-18
  3. 海上風(fēng)電浮式基礎(chǔ)結(jié)構(gòu)設(shè)計(jì)及整體強(qiáng)度分析
    2024-08-18
  4. 區(qū)域企業(yè)異質(zhì)性特征、節(jié)能減排與碳排放強(qiáng)度——基于中國(guó)省市工業(yè)企業(yè)面板數(shù)據(jù)的研究
    2024-08-18
  5. 基于C8051F020單片機(jī)的秸稈強(qiáng)度測(cè)試儀
    2024-08-18
  6. 常規(guī)加熱條件下四種不同強(qiáng)度酸對(duì)玉米秸稈降解的影響
    2024-08-18
  7. 大型風(fēng)電安裝船分段吊裝方案自動(dòng)化設(shè)計(jì)及仿真設(shè)計(jì)研究
    2024-08-18
  8. 自升式雙體風(fēng)電安裝船波浪運(yùn)動(dòng)及樁腿設(shè)計(jì)分析研究
    2024-08-18
  9. 摻和麥秸稈纖維土體材料抗壓強(qiáng)度性能試驗(yàn)研究
    2024-08-18
  10. 放牧閹牦牛提前出欄甲烷排放強(qiáng)度減排潛力探討
    2024-08-18
  11. 提高中強(qiáng)度鋁合金節(jié)能導(dǎo)線壓接后拉斷力技術(shù)研究
    2024-08-18
  12. 麥秸稈的力學(xué)性能及加筋濱海鹽漬土的抗壓強(qiáng)度研究
    2024-08-18
  13. 太陽(yáng)能路燈照明系統(tǒng)的受力分析與強(qiáng)度效核
    2024-08-18
  14. 本田節(jié)能車車架結(jié)構(gòu)強(qiáng)度分析與輕量化設(shè)計(jì)
    2024-08-18
  15. 新型3D夾層結(jié)構(gòu)復(fù)合材料風(fēng)電用3MW導(dǎo)流罩強(qiáng)度、剛度設(shè)計(jì)計(jì)算
    2024-08-18