國務(wù)院關(guān)于印發(fā)《2024—2025年節(jié)能降碳行動(dòng)方案》的通知
詳解:你不知道的鈍化接觸太陽能電池
詳解:你不知道的鈍化接觸太陽能電池晶硅太陽能電池的表面鈍化一直是設(shè)計(jì)和優(yōu)化的重中之重。從早期的僅有背電場(chǎng)鈍化,到正面氮化硅鈍化,再到背面引入諸如氧化硅、氧化鋁、氮化硅等介質(zhì)層的鈍化
晶硅太陽能電池的表面鈍化一直是設(shè)計(jì)和優(yōu)化的重中之重。從早期的僅有背電場(chǎng)鈍化,到正面氮化硅鈍化,再到背面引入諸如氧化硅、氧化鋁、氮化硅等介質(zhì)層的鈍化局部開孔接觸的PERC/PERL設(shè)計(jì)。雖然這一結(jié)構(gòu)暫時(shí)緩解了背面鈍化的問題,但并未根除,開孔處的高復(fù)合速率依然存在,而且使工藝進(jìn)一步復(fù)雜。近幾年來,一種既能實(shí)現(xiàn)背面整面鈍化,且無需開孔接觸的技術(shù)成為機(jī)構(gòu)研究的熱點(diǎn),這就是鈍化接觸(Passivated Contact)技術(shù)。當(dāng)電池兩面均采用鈍化接觸時(shí),還可能實(shí)現(xiàn)無需擴(kuò)散PN結(jié)的選擇性接觸(Selective Contact)電池結(jié)構(gòu)。本文將詳細(xì)介紹鈍化接觸技術(shù)的背景,特點(diǎn)及研究現(xiàn)狀,并討論如何使用這一技術(shù)實(shí)現(xiàn)選擇性接觸電池。
表面鈍化的演進(jìn)
圖1,太陽能電池表面鈍化結(jié)構(gòu)的演進(jìn)
鈍化的“史前時(shí)代”
在90年代之前晶硅電池商業(yè)化生產(chǎn)的早期,太陽能電池制造商已經(jīng)開始采用絲網(wǎng)印刷技術(shù),但與我們?nèi)缃袷褂玫挠钟兴煌V饕膮^(qū)別在于兩點(diǎn):首先當(dāng)時(shí)的正面網(wǎng)印銀漿沒有燒穿(Fire-through)這一功能,因此在當(dāng)時(shí)的生產(chǎn)線上,需要先進(jìn)行網(wǎng)印,而后沉積當(dāng)時(shí)的TiO2減反射層。另一個(gè)區(qū)別在于當(dāng)時(shí)的銀漿與硅形成有效歐姆接觸的能力較差,只有與高摻雜的硅才可以接觸良好。由于TiO2沒有很好的鈍化功能,人們?cè)诋?dāng)時(shí)并沒有過多的考慮鈍化。而且由于減反射層在金屬電極之上,因此沉積的時(shí)候需要用模版遮擋主柵,以便后續(xù)的串焊。
雖然這一時(shí)期,在實(shí)驗(yàn)室中,科研人員已經(jīng)采用SiO2鈍化電池表面,并取得不俗的開路電壓和效率。
SiNx:H第一次進(jìn)化
90年代,科研機(jī)構(gòu)和制造商開始探索使用等離子體增強(qiáng)化學(xué)氣相沉積(PECVD)技術(shù)制備含氫的氮化硅(SiNx:H)薄膜用作電池正面的減反射膜。其中原因之一在于相對(duì)合適的折射率,但更重要的原因則在于氮化硅優(yōu)良的的鈍化效果。氮化硅除了可以飽和表面懸掛鍵,降低界面態(tài)外,還通過自身的正電荷,減少正面n型硅中的少子濃度,從而降低表面復(fù)合速率。SiNx中攜帶的氫可以在燒結(jié)的過程中擴(kuò)散到硅片中,對(duì)發(fā)射極和硅片的內(nèi)部晶體缺陷進(jìn)行鈍化,這對(duì)品質(zhì)較低的多晶硅片尤其有效,大幅提高了當(dāng)時(shí)太陽能電池的效率。
伴隨著鈍化材料上的創(chuàng)新,銀漿材料與燒結(jié)工藝上的變革也同時(shí)到來,那就是可以燒穿的漿料和共燒(Co-firing)燒結(jié)工藝。有了燒穿特性后,可以先進(jìn)行減反射膜的沉積,后網(wǎng)印漿料,然后燒結(jié)。由于順序的顛倒,不用再擔(dān)心金屬柵線上覆蓋的減反射層影響焊接,也省去了沉積TiO2需要的部分遮擋。同時(shí)人們發(fā)明了將正反面漿料一次燒結(jié)的共燒工藝,在一次燒結(jié)中,正面的銀漿穿過SiNx與硅形成接觸,而背面的鋁漿也同步形成背面電極和背電場(chǎng)(back surface field)。這一系列改進(jìn)大大簡化了絲網(wǎng)印刷電池的工藝,并逐漸成為了晶硅電池生產(chǎn)的主流。
AlOx第二次進(jìn)化
隨著電池正面的鈍化效果和接觸性能由于SiNx的使用和銀漿改進(jìn)在不斷提高,進(jìn)一步優(yōu)化正面已經(jīng)進(jìn)入瓶頸階段,人們把視線投向了另一個(gè)復(fù)合嚴(yán)重的區(qū)域,那就是電池的背表面。雖然在傳統(tǒng)絲網(wǎng)印刷的晶硅電池中,鋁背場(chǎng)可以減少少子濃度,減少復(fù)合,但仍然無法與使用介質(zhì)層帶來的鈍化效果相比較。其實(shí)背面的介質(zhì)層鈍化也非新鮮話題,UNSW早在90年代就提出了發(fā)射極和背面鈍化(PERC)結(jié)構(gòu)以及發(fā)射極和背面鈍化局部擴(kuò)散(PERL)結(jié)構(gòu),在早期設(shè)計(jì)中,這兩種結(jié)構(gòu)都在背面采用氧化硅層鈍化,局部開孔實(shí)現(xiàn)點(diǎn)接觸以減少非鈍化區(qū)域的面積。兩者的區(qū)別在于是否在開口區(qū)域進(jìn)行局部摻雜擴(kuò)散,局部擴(kuò)散增加工藝難度,但會(huì)形成局部背電場(chǎng),減少接觸部分的復(fù)合速率。但高品質(zhì)氧化硅的生長需要較高的溫度,對(duì)于已經(jīng)經(jīng)過高溫?cái)U(kuò)散的硅片來說,為減少對(duì)體少子壽命的影響,應(yīng)盡量減少長時(shí)間的高溫工藝,因此對(duì)其他材料的搜索在2000年左右提上議事日程。
既然SiNx已經(jīng)在電池正面證明有諸多好處,那能否在背面繼續(xù)使用這一材料呢。答案是否定的,上面已經(jīng)提到,SiNx鈍化的機(jī)制之一在于利用其正電荷減少正面n型區(qū)的少子濃度,可是到了p型的背面,其正電荷將有可能在背面誘導(dǎo)形成一層n型反轉(zhuǎn)層(inversionlayer),這會(huì)造成背面的旁路損失,影響電流,降低電壓和填充因子。
那么問題來了,鈍化背面究竟哪家強(qiáng)呢?在歐洲幾家研究機(jī)構(gòu)的努力下,一種對(duì)光伏研究人員并不陌生的材料的又一次走到臺(tái)前,那就是氧化鋁(AlOx)。其不但像SiNx一樣可以鈍化表面缺陷,還擁有與SiNx相反的負(fù)電荷,正是因?yàn)檫@一點(diǎn),在p型硅背面使用AlOx鈍化層,不但不會(huì)形成反轉(zhuǎn)層造成漏電,反而會(huì)增加p型硅中多子濃度,降低少子濃度,從而降低表面復(fù)合速率。不過AlOx的使用也需要伴隨這工藝的改進(jìn)和設(shè)備的進(jìn)步,例如解決高速沉積AlOx的問題,氧化鋁本身的不穩(wěn)定性以及良品率較低等問題。
鈍化接觸,第三次進(jìn)化?
PERC以及PERL結(jié)構(gòu)的電池已經(jīng)擁有相對(duì)完善的表面鈍化結(jié)構(gòu),不過將背面的接觸范圍限制在開孔區(qū)域,除了增加了工藝的復(fù)雜度外,開孔的過程采用不同的工藝還會(huì)對(duì)周圍的硅材料造成不同程度的損傷,這也額外的增加了金屬接觸區(qū)域的復(fù)合。由于開孔限制了載流子的傳輸路徑,使之偏離垂直于接觸面的最短路徑并擁堵在開口處,增大了填充因子的損失。有沒有一種辦法即能降低表面復(fù)合,又無需開孔呢。這就需要提到近幾年呼聲高漲的鈍化接觸(Passivated Contact)技術(shù)。
假設(shè)我們能找到這樣一種材料或結(jié)構(gòu),其滿足(1)擁有良好的表面鈍化效果;(2)分離準(zhǔn)費(fèi)米能級(jí);(3)可以高效傳輸一種載流子。那么就可以把這一結(jié)構(gòu)用于電池的表面,形成即滿足鈍化要求,又無需開孔即可傳輸電流的鈍化接觸。
德國弗勞恩霍夫太陽能研究所已經(jīng)開發(fā)出一項(xiàng)名為TOPCon(Tunnel Oxide
Passivated Contact,隧穿氧化層鈍化接觸)的技術(shù)。研究人員首先在電池背面用化學(xué)方法制備一層超薄氧化硅,然后再沉積一層摻雜硅薄層,二者共同形成了鈍化接觸結(jié)構(gòu),這兩層材料為硅片的背面提供了良好的表面鈍化,而由于氧化層很薄,硅薄層有摻雜,多子可以穿透這兩成鈍化層,而少子則被阻擋,如果在其上再沉積金屬,就可以得到無需開孔的鈍化接觸。這一技術(shù)的詳細(xì)信息我們將在下文中討論。
不過這樣的鈍化接觸只能用在電池背面嗎,如果用在正面會(huì)怎樣?
沒有擴(kuò)散PN結(jié)的太陽能電池
其實(shí)這并非一個(gè)新鮮的問題,雖然鈍化接觸電池這一說法近兩年才出現(xiàn),但其所描述的結(jié)構(gòu)確實(shí)不折不扣的早已為科學(xué)家們所研究。這種通過外加材料和結(jié)構(gòu)彎曲能帶,而非電池吸收層本身摻雜,來實(shí)現(xiàn)對(duì)載流子選擇性通過的表面接觸設(shè)計(jì),我們稱為選擇性接觸(SelectiveContact)電池,而這一設(shè)計(jì)與我們傳統(tǒng)認(rèn)識(shí)中的通過擴(kuò)散得到PN結(jié)的電池有根本的不同。
雖然我們現(xiàn)在常見的電池有高溫?cái)U(kuò)散得到的PN結(jié),而PN結(jié)的內(nèi)建電場(chǎng)被認(rèn)為是分離光生載流子并讓太陽能電池發(fā)電的動(dòng)力。而其實(shí)太陽能電池并不一定必須要有明確的PN結(jié)。上世紀(jì)70年代,MartinGreen教授就提出了無需擴(kuò)散PN結(jié)的金屬-絕緣層-半導(dǎo)體(MIS)結(jié)構(gòu)太陽能電池。1985年,EliYablonovitch教授就提出理想的太陽能電池應(yīng)該是“采用兩個(gè)異質(zhì)結(jié)來設(shè)計(jì)”,即將吸收材料置于兩個(gè)寬帶隙材料之間。而SunPower的創(chuàng)始人之一RichardSwanson博士也在10年前預(yù)測(cè)接近理論效率的晶硅太陽能電池應(yīng)“在硅和金屬之間,放置一層寬帶隙材料構(gòu)成異質(zhì)結(jié)”。這些結(jié)構(gòu)都指向選擇性接觸電池。
假設(shè)圖2中間是吸收材料,左右兩側(cè)分別是空穴電極和電子電極,而電極與吸收材料之間則是選擇性傳輸層,左側(cè)為空穴傳輸層,右側(cè)為電子傳輸層。由于選擇性接觸材料自身帶隙、逸出功和費(fèi)米能級(jí)的影響,吸收材料能帶被迫彎曲,這使得只有與選擇性傳輸層對(duì)應(yīng)的載流子才能流向并穿透界面,同時(shí)排斥另一種載流子,進(jìn)而降低了表面載流子濃度,從而帶來了良好的表面鈍化效果。
圖2,選擇性接觸電池能帶圖
下面,我們用選擇性接觸的理論解釋一下松下異質(zhì)結(jié)(HIT)電池的原理[5]。HIT電池吸收層采用n型單晶硅片,正面首先沉積很薄的本征非晶硅層,作為表面鈍化層,然后沉積硼摻雜的p+型非晶硅層,二者共同構(gòu)成正面空穴傳輸層。沉積后,硅片靠近表面由于能帶彎曲,阻擋了電子向正面的移動(dòng),電子只能向后表面移動(dòng)。相反的對(duì)空穴來說,雖然本征層對(duì)空穴有一個(gè)小的阻擋,但由于本征層很薄,空穴可以隧穿然后通過高摻雜的p+型非晶硅。在背面同樣沉積本征非晶硅薄層和摻磷的n+非晶硅層,同樣由于能帶彎曲,空穴無法輕易傳過背面,而電子可以傳過,所以二者構(gòu)成了電子傳輸層。通過在電池正反兩面沉積選擇性傳輸層,使得光生載流子只能在吸收材料中產(chǎn)生富集然后從電池的一個(gè)表面流出,從而實(shí)現(xiàn)二者的分離。
圖3,HIT異質(zhì)結(jié)電池能帶圖
松下異質(zhì)結(jié)HIT電池是一種典型的選擇性接觸結(jié)構(gòu)。另一種典型的選擇性接觸電池為Silevo公司的Triex隧道異質(zhì)結(jié)電池[6],與HIT電池結(jié)構(gòu)相似但鈍化層采用氧化硅而非本征非晶硅。而與這兩種完全意義上的選擇性電池不同,上文中提到的背面鈍化接觸電池其實(shí)是一種只在背面實(shí)現(xiàn)了選擇性接觸的電池。背面鈍化接觸技術(shù)究竟性能如何,有沒有雙面采用鈍化接觸技術(shù)實(shí)現(xiàn)選擇性接觸電池的設(shè)計(jì)呢?下面讓我們看一下這個(gè)領(lǐng)域的最新進(jìn)展。
鈍化接觸技術(shù)的研究進(jìn)展
近年來,先后有多家研究機(jī)構(gòu)對(duì)鈍化接觸太陽能電池展開研究。雖然松下已經(jīng)展示了采用非晶硅薄膜作為鈍化層的HIT電池,最新破紀(jì)錄的效率達(dá)到25.6%,不過非晶硅薄膜由于其對(duì)表面準(zhǔn)備要求較高,無法承受較高溫度后續(xù)工藝,人們開始將視野投向其他有鈍化效果的薄膜材料。幾家研究機(jī)構(gòu)目前的研究熱點(diǎn)集中在氧化硅薄層和高摻雜硅薄層的疊層結(jié)構(gòu)。
德國弗勞恩霍夫太陽能研究所(Fraunhofer ISE)
FraunhoferISE已在鈍化接觸電池方向耕耘多年。在2013年推出了自己的隧穿氧化層鈍化接觸(TOPCon)技術(shù)。使用一層超薄的氧化層與摻雜的薄膜硅鈍化電池的背面。其中背面氧化層厚度1.4nm,采用濕法化學(xué)生長。隨后在氧化層之上,沉積20nm摻磷的非晶硅,之后經(jīng)過退火重結(jié)晶并加強(qiáng)鈍化效果。經(jīng)過上述步驟,雙面鈍化的200μm厚度的n型FZ硅片的隱開路電壓(iVoc)可以達(dá)到710mV以上,即使后續(xù)工藝溫度超過400°C,iVoc仍可保持在700mV以上。其中氧化硅減少了表面態(tài)保持了較低的隧穿電阻,摻雜多晶硅提供了場(chǎng)致鈍化并對(duì)載流子選擇性透過。需要指出的是,早MIS電池的研究中,研究人員就已經(jīng)發(fā)現(xiàn)當(dāng)氧化層厚度超過2nm后,其隧穿效應(yīng)就開始顯著下降,影響填充因子。
具體到電池工藝方面,F(xiàn)raunhoferISE采用n型FZ硅片,正面采用普通金字塔制絨,硼擴(kuò)散,ALD氧化鋁加PECVD氮化硅鈍疊層起到鈍化和減反射效果。背面采用上述TOPCon技術(shù),正反金屬化采用蒸鍍Ti/Pd/Ag疊層實(shí)現(xiàn),電池開路電壓達(dá)到690.4mV,填充因子也達(dá)到81.9%。為了進(jìn)一步提高效率,其進(jìn)一步優(yōu)化正面電極設(shè)計(jì),降低金屬接觸面積,背面換用單層1μm的銀提高背面內(nèi)部反射,開路電壓達(dá)到700mV,填充因子82%,效率達(dá)到23.7%。而在今年3月份的SiliconPV會(huì)議上,其公布的采用TOPCon技術(shù)的最新效率為24.9%。而相比PERL結(jié)構(gòu)電池,TOPCon技術(shù)無需背面的開孔及對(duì)準(zhǔn)。
圖4,背面采用TOPCon技術(shù)的背面鈍化接觸電池結(jié)構(gòu)
在上述設(shè)計(jì)中,F(xiàn)raunhoferISE只是將TOPCon技術(shù)用于正面。2014年,該研究機(jī)構(gòu)公布了正反兩面鈍化接觸的設(shè)計(jì),實(shí)現(xiàn)了我們上文介紹的選擇性接觸電池結(jié)構(gòu)。采用p型FZ硅片,250μm厚度,無需擴(kuò)散,正反兩面直接化學(xué)生長1.4nm氧化層,分別沉積15nm摻磷和摻硼的非晶硅,之后退火。正面采用濺鍍ITO,蒸鍍Ti/Pd/Ag疊層?xùn)啪€,背面蒸銀作為背面電極。該電池設(shè)計(jì)開路電壓達(dá)到692.4mV,填充因子達(dá)到79.4%。由于退火溫度的不同,這里沉積的非晶硅并未結(jié)晶為多晶硅,而是達(dá)到了類似薄膜硅電池中的微晶硅形態(tài)。但由于正面并未制絨,以及類似HIT電池中的正面ITO和微晶硅層的吸收,其短路電流只有31.6mA/cm2,效率17.3%。不過研究人員還特別對(duì)比了正面多晶硅和微晶硅的吸收,同厚度的微晶硅的吸收比非晶硅小最多兩倍。因此研究人員認(rèn)為通過后續(xù)優(yōu)化,這一結(jié)構(gòu)有望成為可以與HIT競(jìng)爭的另一種選擇性接觸電池的設(shè)計(jì)。
圖5,雙面采用鈍化接觸技術(shù)的選擇性接觸電池結(jié)構(gòu)
美國國家可再生能源實(shí)驗(yàn)室(NREL)
NREL同樣采用了氧化硅和多晶硅薄膜,其首先在n型硅片正面擴(kuò)散p型發(fā)射極,之后使用KOH平整背面,接下來采用700C熱生長或者硝酸化學(xué)方法制作約1.5nm厚度的二氧化硅層。之后在之上PECVD沉積幾十納米厚的高摻雜非晶硅(a-Si:H)。通過約850C的退火處理,非晶硅薄層結(jié)晶為多晶硅,之后再經(jīng)過450°C氮?dú)浠旌蠚夥胀嘶穑‵GA),加強(qiáng)表面鈍化。最后背面整面金屬化。
NREL稱SiO2和多晶硅層對(duì)鈍化接觸的性質(zhì)都有影響。通過850°C的非晶硅重結(jié)晶過程后,化學(xué)和熱生長得到的氧化層可以得到相似的鈍化效果,隱開路電壓(ImpliedVoc)可以達(dá)到700mV以上,暗飽和電流(DarkSaturationCurrent)低于10fA/cm2,接觸電阻約為20-cm2。不過NREL認(rèn)為高摻雜多晶硅/氧化硅/硅接觸的良好品質(zhì)的機(jī)理尚未完全弄清,良好的表面鈍化可能來自氧化硅的化學(xué)鈍化效果以及高摻雜多晶硅的場(chǎng)致鈍化效果,良好的導(dǎo)電率則來自缺陷輔助隧穿機(jī)制以及氧化層上的微孔。
此外,澳大利亞國立大學(xué)(ANU),美國加州大學(xué)(UC),瑞士洛桑聯(lián)邦理工學(xué)院(EPFL)等研究機(jī)構(gòu)也都在這一領(lǐng)域進(jìn)行研究,探索不同的鈍化材料和結(jié)構(gòu)。
綜上,背面鈍化接觸太陽能電池的優(yōu)點(diǎn)包括(1)優(yōu)良的背面鈍化效果,徹底根除了背面金屬與硅的直接接觸,提高開路電壓,而這被認(rèn)為是目前太陽能電池主要的復(fù)合損失,而這是傳統(tǒng)鋁背場(chǎng)和PERC結(jié)構(gòu)都無法避免的;(2)無需復(fù)雜的鈍化層開口工藝。如果將鈍化接觸技術(shù)用于正面還可以省去擴(kuò)散摻雜工藝,防止擴(kuò)散影響高品質(zhì)硅片的載流子壽命,但也會(huì)面臨與HIT電池類似的正面寄生吸收問題,因此尋找吸光更少的鈍化薄膜材料也是當(dāng)前研究的熱點(diǎn)之一。
展望
還記得選擇性發(fā)射極剛剛興起的時(shí)候,這一技術(shù)解決了銀漿需要低方阻區(qū)域形成歐姆接觸,而方阻太低復(fù)合過高之間的矛盾。雖然需要額外的工藝進(jìn)行不同區(qū)域的擴(kuò)散,后續(xù)工藝也需要額外對(duì)準(zhǔn),但仍被給予厚望,并被嘗試采用??呻S著漿料的改進(jìn),正面銀漿可以與方阻越來越高的硅形成良好的接觸,均一發(fā)射極擴(kuò)散濃度整體降低,不但解決了選擇性發(fā)射極針對(duì)的問題,還避免了復(fù)雜的工藝,因此迅速得到推廣和采用,選擇性發(fā)射極技術(shù)如今也不像昔日那般受人追捧。
背面是否會(huì)經(jīng)歷類似的道路呢,PERC和PERL結(jié)構(gòu)雖然部分解決了背面鈍化的問題,但如何形成局部接觸仍然給傳統(tǒng)絲網(wǎng)印刷產(chǎn)線帶來不小的調(diào)整。反觀鈍化接觸技術(shù),雖然無需開孔使電池背面的結(jié)構(gòu)更加價(jià)單,但傳統(tǒng)晶硅電池制造商缺乏鈍化接觸技術(shù)所需要的薄膜沉積及結(jié)晶的產(chǎn)業(yè)經(jīng)驗(yàn),簡單的結(jié)構(gòu)并不一定意味著簡單的生產(chǎn)。背面鈍化接觸技術(shù)能否后來居上,而選擇性接觸電池家族由于雙面鈍化接觸電池的加入也更加讓人期待,這一技術(shù)有能力跟HIT一爭高下嗎,讓我們一起拭目以待。
特別需要指出的是,在市場(chǎng)需求和成本結(jié)構(gòu)變換的多重影響下,即使是FirstSolar這樣的薄膜大廠近年來也通過收購Tetrasun布局晶硅電池和組件。國內(nèi)的薄膜光伏制造商是否有類似的打算呢?憑借在非晶硅薄膜沉積和結(jié)晶方面人才、技術(shù)和設(shè)備的積累,鈍化接觸技術(shù)或者其他選擇性接觸技術(shù)也許是國內(nèi)薄膜光伏制造商切入晶硅領(lǐng)域的不錯(cuò)的技術(shù)切入點(diǎn)。
-
2016年新能源汽車補(bǔ)貼標(biāo)準(zhǔn)公布 2.5萬起2024-08-16