國(guó)務(wù)院關(guān)于印發(fā)《2024—2025年節(jié)能降碳行動(dòng)方案》的通知
電解液在鋰離子電池充放電過(guò)程中的行為研究
電解液在鋰離子電池充放電過(guò)程中的行為研究鋰離子電池主要由正極、負(fù)極、隔膜和電解液,以及結(jié)構(gòu)件等部分組成,在鋰離子電池的外部,通過(guò)導(dǎo)線和負(fù)載等,將負(fù)極的電子傳導(dǎo)到正極,而在電池內(nèi)部,
鋰離子電池主要由正極、負(fù)極、隔膜和電解液,以及結(jié)構(gòu)件等部分組成,在鋰離子電池的外部,通過(guò)導(dǎo)線和負(fù)載等,將負(fù)極的電子傳導(dǎo)到正極,而在電池內(nèi)部,正負(fù)極之間則通過(guò)電解液進(jìn)行連接,在放電的時(shí)候,Li+通過(guò)電解液從負(fù)極擴(kuò)散到正極,嵌入到正極的晶體結(jié)構(gòu)之中。所以在鋰離子電池中,電解液是非常重要的一環(huán),對(duì)鋰離子電池的性能有著重要的影響。理想的情況下,正負(fù)極之間應(yīng)該有充足的電解液,在充放電的過(guò)程中都應(yīng)該具有足夠的Li+濃度,從而減小由于電解液的濃差極化造成的性能衰降。但是在實(shí)際充放電過(guò)程中,受制于Li+擴(kuò)散速度等因素,在正負(fù)極會(huì)產(chǎn)生Li+濃度梯度,Li+濃度隨著充放電而波動(dòng)。由于結(jié)構(gòu)設(shè)計(jì)和生產(chǎn)工藝等原因,還會(huì)導(dǎo)致電解液在電芯內(nèi)部的分布不均勻,特別是在充電的過(guò)程中,隨著電極的膨脹,會(huì)在電芯的內(nèi)部形成部分“干區(qū)”,“干區(qū)”的存在導(dǎo)致了能夠參與到充放電反應(yīng)中的活性物質(zhì)減少,引起電池內(nèi)局部SoC不均勻,從而導(dǎo)致電池內(nèi)局部老化速度加快。M.J. Mu hlbauer在研究鋰離子電池老化對(duì)Li分布的影響中曾發(fā)現(xiàn),由于在充放電過(guò)程中,正負(fù)極極片都存在一定體積膨脹,導(dǎo)致電芯也存在一定程度的體積膨脹和收縮,電芯會(huì)如同“呼吸”一般,反復(fù)的“吸入”和“吐出”電解液,所以不同時(shí)刻,電解液在電芯內(nèi)的浸潤(rùn)情況也在實(shí)時(shí)變化(如下圖所示)。
受限于技術(shù)手段,以往我們對(duì)于在充放電過(guò)程中電解液在鋰離子電池內(nèi)部的行為缺少直觀的認(rèn)識(shí),更像是研究一個(gè)黑箱,我們提出各種理論,對(duì)起行為進(jìn)行推測(cè)。為了更加形象和直觀的研究電解液在鋰離子電池內(nèi)的行為特點(diǎn),日本京都大學(xué)的Toshiro Yamanaka等[2]利用拉曼光譜工具對(duì)疊片方形鋰離子電池進(jìn)行了研究,該研究最大的特點(diǎn)是實(shí)現(xiàn)了對(duì)充放電過(guò)程中電解液的分布和電解液內(nèi)離子濃度變化情況的實(shí)時(shí)觀測(cè)。
實(shí)驗(yàn)中Toshiro Yamanaka采用了方形疊片電池作為研究對(duì)象,電解液則采用了EC和DEC溶劑,LiClO4作為電解質(zhì)鹽,為了能夠?qū)﹄娦緝?nèi)部電解液的行為進(jìn)行實(shí)時(shí)觀測(cè),Toshiro Yamanaka在疊片鋰離子電池內(nèi)部引入了8根光纖作為拉曼光譜的探測(cè)器,研究電解液在電池內(nèi)的浸潤(rùn)和離子濃度的變化情況,8根光纖在電池內(nèi)的排布如下圖c所示,
下圖展示了7號(hào)光纖探測(cè)器(電芯邊緣)在充放電過(guò)程中探測(cè)到的不同的離子濃度的變化趨勢(shì),從結(jié)果上可以看到,在充電的過(guò)程中EC-Li+和ClO4-的濃度呈現(xiàn)上升趨勢(shì),而在放電的過(guò)程中則呈現(xiàn)出下降的趨勢(shì)。說(shuō)明隨著充電的過(guò)程,Li+從正極脫出,進(jìn)入到電解液引起了電解液中Li+濃度的上升。
首頁(yè) 下一頁(yè) 上一頁(yè) 尾頁(yè)