用水生產(chǎn)大量氫氣是人類夢寐以求的愿望
來源:新能源網(wǎng)
時間:2024-08-17 12:05:18
熱度:
用水生產(chǎn)大量氫氣是人類夢寐以求的愿望【專家解說】:太陽能可以通過分解水或其它途徑轉(zhuǎn)換成氫能,即太陽能制氫,其主要方法如 下: (1)太陽能電解水制氫 電解水制氫是目前應(yīng)用較廣且比較
【專家解說】:太陽能可以通過分解水或其它途徑轉(zhuǎn)換成氫能,即太陽能制氫,其主要方法如 下: (1)太陽能電解水制氫 電解水制氫是目前應(yīng)用較廣且比較成熟的方法,效率較高(75%-85%),但耗電大,用常規(guī)電制氫,從能 量利用而言得不償失。所以,只有當(dāng)太陽能發(fā)電的成本大幅度下降后,才能實現(xiàn)大規(guī)模電解水制氫。 (2)太陽能熱分解水制氫 將水或水蒸汽加熱到3000K以上,水中的氫和氧便能分解。這種方法制氫效率高,但需要高倍聚光器才 能獲得如此高的溫度,一般不采用這種方法制氫。 (3)太陽能熱化學(xué)循環(huán)制氫 為了降低太陽能直接熱分解水制氫要求的高溫,發(fā)展了一種熱化學(xué)循環(huán)制氫方法,即在水中加入一種或 幾種中間物,然后加熱到較低溫度,經(jīng)歷不同的反應(yīng)階段,最終將水分解成氫和氧,而中間物不消耗,可循環(huán) 使用。熱化學(xué)循環(huán)分解的溫度大致為900-1200K,這是普通旋轉(zhuǎn)拋物面鏡聚光器比較容易達(dá)到的溫度,其分 解水的效率在17.5%-75.5%。存在的主要問題是中間物的還原,即使按99.9%-99. 99%還原,也還要作 0.1%-0.01%的補(bǔ)充,這將影響氫的價格,并造成環(huán)境污染。 (4)太陽能光化學(xué)分解水制氫 這一制氫過程與上述熱化學(xué)循環(huán)制氫有相似之處,在水中添加某種光敏物質(zhì)作催化劑,增加對陽光中長 波光能的吸收,利用光化學(xué)反應(yīng)制氫。日本有人利用碘對光的敏感性,設(shè)計了一套包括光化學(xué)、熱電反應(yīng)的綜 合制氫流程,每小時可產(chǎn)氫97升,效率達(dá)10%左右。 (5)太陽能光電化學(xué)電池分解水制氫 1972年,日本本多健一等人利用n型二氧化鈦半導(dǎo)體電極作陽極,而以鉑黑作陰極,制成太陽能光電化 學(xué)電池,在太陽光照射下,陰極產(chǎn)生氫氣,陽極產(chǎn)生氧氣,兩電極用導(dǎo)線連接便有電流通過,即光電化學(xué)電池 在太陽光的照射下同時實現(xiàn)了分解水制氫、制氧和獲得電能。這一實驗結(jié)果引起世界各國科學(xué)家高度重視, 認(rèn)為是太陽能技術(shù)上的一次突破。但是,光電化學(xué)電他制氫效率很低,僅0.4%,只能吸收太陽光中的紫外光 和近紫外光,且電極易受腐蝕,性能不穩(wěn)定,所以至今尚未達(dá)到實用要求。 (6)太陽光絡(luò)合催化分解水制氫 從1972年以來,科學(xué)家發(fā)現(xiàn)三聯(lián)毗啶釘絡(luò)合物的激發(fā)態(tài)具有電子轉(zhuǎn)移能力,并從絡(luò)合催化電荷轉(zhuǎn)移反 應(yīng),提出利用這一過程進(jìn)行光解水制氫。這種絡(luò)合物是一種催化劑,它的作用是吸收光能、產(chǎn)生電荷分離、電 荷轉(zhuǎn)移和集結(jié),并通過一系列偶聯(lián)過程,最終使水分解為氫和氧。絡(luò)合催化分解水制氫尚不成熟,研究工作正 在繼續(xù)進(jìn)行。 (7)生物光合作用制氫 40多年前發(fā)現(xiàn)綠藻在無氧條件下,經(jīng)太陽光照射可以放出氫氣;十多年前又發(fā)現(xiàn),蘭綠藻等許多藻類在 無氧環(huán)境中適應(yīng)一段時間,在一定條件下都有光合放氫作用。 目前,由于對光合作用和藻類放氫機(jī)理了解還不夠,藻類放氫的效率很低,要實現(xiàn)工程化產(chǎn)氫還有相當(dāng) 大的距離。據(jù)估計,如藻類光合作用產(chǎn)氫效率提高到10%,則每天每平方米藻類可產(chǎn)氫9克分子,用5萬平 方公里接受的太陽能,通過光合放氫工程即可滿足美國的全部燃料需要。 2.2.4太陽能-生物質(zhì)能轉(zhuǎn)換 通過植物的光合作用,太陽能把二氧化碳和水合成有機(jī)物(生物質(zhì)能)并放出氧氣。光合作用是地球上最 大規(guī)模轉(zhuǎn)換太陽能的過程,現(xiàn)代人類所用燃料是遠(yuǎn)古和當(dāng)今光合作用固定的太陽能,目前,光合作用機(jī)理尚 不完全清楚,能量轉(zhuǎn)換效率一般只有百分之幾,今后對其機(jī)理的研究具有重大的理論意義和實際意義。 2.2.5太陽能-機(jī)械能轉(zhuǎn)換 20世紀(jì)初,俄國物理學(xué)家實驗證明光具有壓力。20年代,前蘇聯(lián)物理學(xué)家提出,利用在宇宙空間中巨大 的太陽帆,在陽光的壓力作用下可推動宇宙飛船前進(jìn),將太陽能直接轉(zhuǎn)換成機(jī)械能??茖W(xué)家估計,在未來 10~20年內(nèi),太陽帆設(shè)想可以實現(xiàn)。 通常,太陽能轉(zhuǎn)換為機(jī)械能,需要通過中間過程進(jìn)行間接轉(zhuǎn)換。 2.3太陽能貯有 地面上接受到的太陽能,受氣候、晝夜、季節(jié)的影響,具有間斷性和不穩(wěn)定性。因此,太陽能貯存十分必 要,尤其對于大規(guī)模利用太陽能更為必要。 太陽能不能直接貯存,必須轉(zhuǎn)換成其它形式能量才能貯存。大容量、長時間、經(jīng)濟(jì)地貯存太陽能,在技術(shù) 上比較困難。本世紀(jì)初建造的太陽能裝置幾乎都不考慮太陽能貯存問題,目前太陽能貯存技術(shù)也還未成熟, 發(fā)展比較緩慢,研究工作有待加強(qiáng)。 2.3.1 太陽能貯熱 (1)顯熱貯存 利用材料的顯熱貯能是最簡單的貯能方法。在實際應(yīng)用中,水、沙、石子、土壤等都可作為貯能材料,其中 水的比熱容最大,應(yīng)用較多。七八十年代曾有利用水和土壤進(jìn)行跨季節(jié)貯存太陽能的報道。但材料顯熱較小, 貯能量受到一定限制。 (2)潛熱貯存 利用材料在相變時放出和吸入的潛熱貯能,其貯能量大,且在溫度不變情況下放熱。 在太陽能低溫貯存中常用含結(jié)晶水的鹽類貯能,如10水硫酸鈉/水氯化鈣、12水磷酸氫鈉等。但在使 用中要解決過冷和分層問題,以保證工作溫度和使用壽命。 太陽能中溫貯存溫度一般在100℃以上、500℃以下,通常在300℃左右。適宜于中溫貯存的材料有:高壓 熱水、有機(jī)流體、共晶鹽等。 太陽能高溫貯存溫度一般在500℃以上,目前正在試驗的材料有:金屬鈉、熔融鹽等。 1000℃以上極高溫貯存,可以采用氧化鋁和氧化鍺耐火球。 (3)化學(xué)貯熱 利用化學(xué)反應(yīng)貯熱,貯熱量大,體積小,重量輕,化學(xué)反應(yīng)產(chǎn)物可分離貯存,需要時才發(fā)生放熱反應(yīng),貯存 時間長。
-
(2008?瀘州)氫氣是一種應(yīng)用前景非常廣闊的新能源,大量制取氫氣是人類夢寐以求的愿望.(1)實驗室可用2024-08-17
-
氫氣是未來理想的能源,水是自然界廣泛存在的物質(zhì),用水生產(chǎn)大量氫氣是人類夢寐以求的愿望,但是這一轉(zhuǎn)化2024-08-17
-
用水生產(chǎn)大量氫氣是人類夢寐以求的愿望2024-08-17
-
氫氣是未來理想的能源,水是自然界廣泛存在的物質(zhì),用水生產(chǎn)大量氫氣是人類夢寐以求的愿望,但是這一轉(zhuǎn)化2024-08-17