優(yōu)點(diǎn):?
(1)普遍:太陽光普照大地,無論陸地或海洋,無論高山或島嶼,都處處皆有,可直接開發(fā)和利用,且勿須開采">

首頁 > 專家說

結(jié)合航天技術(shù),談?wù)動行Ю锰柲艿呐e措

來源:新能源網(wǎng)
時間:2024-08-17 08:08:47
熱度:

結(jié)合航天技術(shù),談?wù)動行Ю锰柲艿呐e措【專家解說】:太陽能利弊:
優(yōu)點(diǎn):?
(1)普遍:太陽光普照大地,無論陸地或海洋,無論高山或島嶼,都處處皆有,可直接開發(fā)和利用,且勿須開采

【專家解說】:太陽能利弊: 優(yōu)點(diǎn):? (1)普遍:太陽光普照大地,無論陸地或海洋,無論高山或島嶼,都處處皆有,可直接開發(fā)和利用,且勿須開采和運(yùn)輸。? (2)無害:開發(fā)利用太陽能不會污染環(huán)境,它是最清潔的能源之一,在環(huán)境污染越來越嚴(yán)重的今天,這一點(diǎn)是極其寶貴的。? (3)巨大:每年到達(dá)地球表面上的太陽輻射能約相當(dāng)于130萬億t標(biāo)煤,其總量屬現(xiàn)今世界上可以開發(fā)的最大能源。 (4)長久:根據(jù)目前太陽產(chǎn)生的核能速率估算,氫的貯量足夠維持上百億年,而地球的壽命也約為幾十億年,從這個意義上講,可以說太陽的能量是用之不竭的。? 缺點(diǎn):? (1)分散性:到達(dá)地球表面的太陽輻射的總量盡管很大,但是能流密度很低。平均說來,北回歸線附近,夏季在天氣較為晴朗的情況下,正午時太陽輻射的輻照度最大,在垂直于太陽光方向1平方米面積上接收到的太陽能平均有1000W左右;若按全年日夜平均,則只有200W左右。而在冬季大致只有一半,陰天一般只有1/5左右,這樣的能流密度是很低的。因此,在利用太陽能時,想要得到一定的轉(zhuǎn)換功率,往往需要面積相當(dāng)大的一套收集和轉(zhuǎn)換設(shè)備,造價較高。? (2)不穩(wěn)定性:由于受到晝夜、季節(jié)、地理緯度和海拔高度等自然條件的限制以及晴、陰、云、雨等隨機(jī)因素的影響,所以,到達(dá)某一地面的太陽輻照度既是間斷的,又是極不穩(wěn)定的,這給太陽能的大規(guī)模應(yīng)用增加了難度。為了使太陽能成為連續(xù)、穩(wěn)定的能源,從而最終成為能夠與常規(guī)能源相競爭的替代能源,就必須很好地解決蓄能問題,即把晴朗白天的太陽輻射能盡量貯存起來,以供夜間或陰雨天使用,但目前蓄能也是太陽能利用中較為薄弱的環(huán)節(jié)之一。? (3)效率低和成本高:目前太陽能利用的發(fā)展水平,有些方面在理論上是可行的,技術(shù)上也是成熟的。但有的太陽能利用裝置,因為效率偏低,成本較高,總的來說,經(jīng)濟(jì)性還不能與常規(guī)能源相競爭。在今后相當(dāng)一段時期內(nèi),太陽能利用的進(jìn)一步發(fā)展,主要受到經(jīng)濟(jì)性的制約。? 太陽能利用中的經(jīng)濟(jì)問題:? 第一,世界上越來越多的國家認(rèn)識到一個能夠持續(xù)發(fā)展的社會應(yīng)該是一個既能滿足社會需要,而又不危及后代人前途的社會。因此,盡可能多地用潔凈能源代替高含碳量的礦物能源,是能源建設(shè)應(yīng)該遵循的原則。隨著能源形式的變化,常規(guī)能源的貯量日益下降,其價格必然上漲,而控制環(huán)境污染也必須增大投資。 第二,我國是世界上最大的煤炭生產(chǎn)國和消費(fèi)國,煤炭約占商品能源消費(fèi)結(jié)構(gòu)的76%,已成為我國大氣污染的主要來源。大力開發(fā)新能源和可再生能源的利用技術(shù)將成為減少環(huán)境污染的重要措施。能源問題是世界性的,向新能源過渡的時期遲早要到來。從長遠(yuǎn)看,太陽能利用技術(shù)和裝置的大量應(yīng)用,也必然可以制約礦物能源價格的上漲。 第一個空間太陽電池載于1958年發(fā)射的Vangtuard I,體裝式結(jié)構(gòu),單晶Si襯底,效率約10%(28℃)。到了1970年代,人們改善了電池結(jié)構(gòu),采用BSF、光刻技術(shù)及更好減反射膜等技術(shù),使電池的效率增加到14%。在70年代和80年代,地面太陽電池大約每5.5年全球產(chǎn)量翻番;而空間太陽電池在空間環(huán)境下的性能,如抗輻射性能等得到了較大改善。由于80年代太陽電池的理論得到迅速發(fā)展,極大地促進(jìn)了地面和空間太陽電池性能的改善。到了90年代,薄膜電池和Ⅲ-Ⅴ電池的研究發(fā)展很快,而且聚光陣結(jié)構(gòu)也變得更經(jīng)濟(jì),空間太陽電池市場競爭十分激烈。在繼續(xù)研究更高性能的太陽電池,主要有兩種途徑:研究聚光電池和多帶隙電池。 × 空間太陽電池主要性能 電池效率 由于太陽電池在不同光強(qiáng)或光譜條件下效率一般不同,對于空間太陽電池一般采用AM0光譜(1.367KW/㎡),對于地面應(yīng)用一般采用AM1.5光譜(即地面中午晴空太陽光,1.000 KWm-2)作為測試電池效率的標(biāo)準(zhǔn)光源。太陽電池在AM0光譜效率一般低于AM1.5光譜效率2~4個百分點(diǎn),例如一個AM0效率為16%的Si太陽電池AM1.5效率約為19%)。 ◎ 25℃,AM0條件下太陽電池效率 電池類型 面積(cm2) 效率(%) 電池結(jié)構(gòu) 一般Si太陽電池 64cm2 14.6 單結(jié)太陽電池 先進(jìn)Si太陽電池 4cm2 20.8 單結(jié)太陽電池 GaAs太陽電池 4cm2 21.8 單結(jié)太陽電池 InP太陽電池 4cm2 19.9 單結(jié)太陽電池 GaInP/GaAs 4cm2 26.9 單片疊層雙結(jié)太陽電池 GaInP/GaAs/Ge 4cm2 25.5 單片疊層雙結(jié)太陽電池 GaInP/GaAs/Ge 4cm2 27.0 單片疊層三結(jié)太陽電池 ◎ 聚光電池 GaAs太陽電池 0.07 24.6 100X GaInP/GaAs 0.25 26.4 50X,單片疊層雙結(jié)太陽電池 GaAs/GaSb 0.05 30.5 100X,機(jī)械堆疊太陽電池 空間太陽電池在大氣層外工作,在近地球軌道太陽平均輻照強(qiáng)度基本不變,通常稱為AM0輻照,其光譜分布接近5800K黑體輻射光譜,強(qiáng)度1353mW/cm2。因此空間太陽電池多采用AM0光譜設(shè)計和測試。 空間太陽電池通常具有較高的效率,以便在空間發(fā)射的重量、體積受限制的條件下,能獲得特定的功率輸出。特別在一些特定的發(fā)射任務(wù)中,如微小衛(wèi)星(重量在50~100公斤)上應(yīng)用,要求單位面積或單位重量的比功率更高。 抗輻照性能 空間太陽電池在地球大氣層外工作,必然會受到高能帶電粒子的輻照,引起電池性能的衰減,主要原因是由于電子或質(zhì)子輻射使少數(shù)載流子的擴(kuò)散長度減小。其光電參數(shù)衰減的程度取決于太陽電池的材料和結(jié)構(gòu)。還有反向偏壓、低溫和熱效應(yīng)等因素也是電池性能衰減的重要原因,尤其對疊層太陽電池,由于熱脹系數(shù)顯著不同,電池性能衰減可能更嚴(yán)重。 × 空間太陽電池的可靠性 光伏電源的可靠性對整個發(fā)射任務(wù)的成功起關(guān)鍵作用,與地面應(yīng)用相比,太陽電池/陣的費(fèi)用高低并不重要,因為空間電源系統(tǒng)的平衡費(fèi)用更高,可靠性是最重要的??臻g太陽電池陣必須經(jīng)過一系列機(jī)械、熱學(xué)、電學(xué)等苛刻的可靠性檢驗。 Si太陽電池 硅太陽電池是最常用的衛(wèi)星電源,從1970年代起,由于空間技術(shù)的發(fā)展,各種飛行器對功率的需求越來越大,在加速發(fā)展其他類型電池的同時,世界上空間技術(shù)比較發(fā)達(dá)的美、日和歐空局等國家,都相繼開展了高效硅太陽電池的研究。以日本SHARP公司、美國的SUNPOWER公司以及歐空局為代表,在空間太陽電池的研究發(fā)展方面領(lǐng)先。其中,以發(fā)展背表面場(BSF)、背表面反射器(BSR)、雙層減反射膜技術(shù)為第一代高效硅太陽電池,這種類型的電池典型效率最高可以做到15%左右,目前在軌的許多衛(wèi)星應(yīng)用的是這種類型的電池。 到了70年代中期,COMSAT研究所提出了無反射絨面電池(使電池效率進(jìn)一步提高)。但這種電池的應(yīng)用受到限制:一是制備過程復(fù)雜,避免損壞PN結(jié);二是這樣的表面會吸收所有波長的光,包括那些光子能量不足以產(chǎn)生電子-空穴對的紅外輻射,使太陽電池的溫度升高,從而抵消了采用絨面而提高的效率效應(yīng);三是電極的制作必須沿著絨面延伸,增加了接觸的難度,使成本升高。 80年代中期,為解決這些問題,高效電池的制作引入了電子器件制作的一些工藝手段,采用了倒金子塔絨面、激光刻槽埋柵、選擇性發(fā)射結(jié)等制作工藝,這些工藝的采用不但使電池的效率進(jìn)一步提高,而且還使得電池的應(yīng)用成為可能。特別在解決了諸如采用帶通濾波器消除溫升效應(yīng)以后,這類電池的應(yīng)用成了空間電源的主角。 雖然很多工藝技術(shù)是由一些研究所提出,但卻是在一些比較大的公司得到了發(fā)揚(yáng)光大,比如倒金子塔絨面、選擇性發(fā)射結(jié)等工藝是在澳大利亞新南威爾士大學(xué)光伏研究中心出現(xiàn),但日本的SHARP公司和美國的SUNPOWER公司目前的技術(shù)水平卻為世界一流,有的技術(shù)甚至已經(jīng)移植到了地面用太陽電池的大批量生產(chǎn)。 為了進(jìn)一步降低電池背面復(fù)合影響,背面結(jié)構(gòu)則采用背面鈍化后開孔形成點(diǎn)接觸,即局部背場。這些高效電池典型結(jié)構(gòu)為PERC、PERL、PERT、PERF[1],其中前種結(jié)構(gòu)的電池已經(jīng)在空間獲得實用。典型的高效硅太陽電池厚度為100μm,也被稱為NRS/BSF(典型效率為17%)和NRS/LBSF(典型效率為18%),其特征是正面具有倒金子塔絨面的選擇性發(fā)射結(jié)構(gòu),前后表面均采用鈍化結(jié)構(gòu)來降低表面復(fù)合,背面場采用全部或局部背場。實際應(yīng)用中還發(fā)現(xiàn),雖然采用局部背場工藝的電池要普遍比NRS/BSF的電池效率高一個百分點(diǎn),但通常局部背場的抗輻照能力比較差。 到了上世紀(jì)90年代中期,空間電源工程人員發(fā)現(xiàn),雖然這種類型電池的初期效率比較高,但電池的末期效率比初期效率下降25%左右,限制了電池的進(jìn)一步應(yīng)用,空間電源的成本仍然不能很好地降低。 為了改變這種情況,以SHARP為首的研究機(jī)構(gòu)提出了雙邊結(jié)電池結(jié)構(gòu),這種電池的出現(xiàn)有效地提高了電池的末期效率,并在HES、HES-1衛(wèi)星上獲得了實際應(yīng)用。 另外研究人員還發(fā)現(xiàn),衛(wèi)星對電池陣位置的要求比較苛刻,如果太陽電池陣不對日定向或?qū)θ斩ㄏ虿畹榷紩绊懙叫l(wèi)星電源的功率,這在一定程度上也限制了衛(wèi)星整體系統(tǒng)的配置。比如空間站這樣復(fù)雜的飛行器,有的電池陣幾乎不能完全保證其充足的太陽角,因而就需要高效電池來滿足要求。雖然目前已經(jīng)部分應(yīng)用了常規(guī)的高效電池,但電池的高的α吸收系數(shù)、有限的空間和重量的需要使其仍然不能滿足空間系統(tǒng)大規(guī)模功率的需要。傳統(tǒng)的電池結(jié)構(gòu)仍然受到很大程度的限制。在這種情況下,俄羅斯在研究高效硅電池初期就側(cè)重于提高電池的末期效率為主,在結(jié)合電池陣研究方面提出了雙面電池的構(gòu)想并獲得了成功,真正做到了高效長壽命和低成本。 GaAs太陽電池 隨著空間科學(xué)和技術(shù)的發(fā)展,對空間電源提出了更高的要求。80年代初期,前蘇聯(lián)、美國、英國、意大利等國開始研究GaAs基系太陽電池。80年代中期,GaAs太陽電池已經(jīng)用于空間系統(tǒng),如1986年前蘇聯(lián)發(fā)射的“和平號”空間站,裝備了10KW的GaAs太陽電池,單位面積比功率達(dá)到180W/㎡。8年后,電池陣輸出功率總衰退不大于15%。 GaAs基系太陽電池經(jīng)歷了從LPE到MOVPE,從同質(zhì)外延到異質(zhì)外延,從單結(jié)到多結(jié)疊層結(jié)構(gòu)發(fā)展變化,其效率不斷提高。從最初的16%增加到25%,工業(yè)生產(chǎn)規(guī)模年產(chǎn)達(dá)100KW以上,并在空間系統(tǒng)得到廣泛的應(yīng)用。更高的效率減小了陣列的大小和重量,增加了火箭的裝載量,減少火箭燃料消耗,因此整個衛(wèi)星電源系統(tǒng)的費(fèi)用更低。 薄膜太陽電池 為適應(yīng)空間應(yīng)用需求,國際上紛紛制訂各自的薄膜太陽電池計劃(如NASA,主要目標(biāo)在于提高比功率和降低發(fā)射裝載容量),提出解決措施: (1)研制超輕柔性襯底薄膜太陽電池; (2)研制多結(jié)薄膜太陽電池。目前,國際發(fā)展趨勢主要涉及非晶硅(a-Si:H)太陽電池、銅銦(鎵)硒(CuInGaSe2)太陽電池和碲化鎘(CdTe)太陽電池。經(jīng)過數(shù)年的努力,其效率達(dá)到15~20%(AM0)。 另一方面,為展開柔性薄膜太陽電池的研制(展開式、折疊式、套桶式、卷廉式)的設(shè)計與應(yīng)用提供可能。自90年代后期,國外已開展了以聚合物為襯底薄膜太陽電池的研制,并取得一定的進(jìn)展。薄膜太陽電池是獲得高效率、長壽命、高可靠、低成本的重要途徑之一。主要包括:a-Si及其合金、CuInSe2 及其合金、以及CdTe三種材料的薄膜太陽電池。 聚光太陽電池 一般認(rèn)為,現(xiàn)代聚光PV開始于1970年代末悉尼國家實驗室,采用了點(diǎn)聚焦非涅耳透鏡硅電池雙軸跟蹤結(jié)構(gòu),隨后并研制了幾個原型。在1980年代,很多研究機(jī)構(gòu)進(jìn)行了一系列成功的實驗,在聚光技術(shù)方面取得了突破性進(jìn)展,如非涅耳透鏡、棱形玻璃蓋片等。在1990年代中期,線聚焦Fresenel透鏡聚光陣技術(shù)已經(jīng)成功地用于SCARLET太陽電池陣,電池為GaInP/GaAs/Ge三結(jié)電池,聚光陣的功率密度大于200 W/㎡,比功率大于45 W/kg。線聚焦Fresenel透鏡聚光陣已經(jīng)用于DEEPSPACE-1。 由于三結(jié)GaAs太陽電池有很好的高溫特性(為高電壓低電流器件),通過聚光將顯著提高電池電流輸出,特別在實現(xiàn)高倍聚光后,可獲得更高的功率輸出。因此,以三結(jié)砷化鎵太陽電池為主要部件的聚光太陽電池以其高效率(可達(dá)到40%以上)、高溫性能好(工作溫度每升高1?C性能僅下降0.2%,可在200?C情況下正常工作,聚光倍數(shù)可達(dá)500倍以上)等特點(diǎn)被國際公認(rèn)為最有發(fā)展前途和最具商用價值的新一代太陽能器件。