在我國,西藏西部太陽能資源最豐富,最高達2333 KWh/㎡ (日輻射量6.4KWh/㎡ ),居世界第二位,僅次于撒哈">

首頁 > 專家說

人們對太陽能的利用有什么?

來源:新能源網(wǎng)
時間:2024-08-17 11:40:06
熱度:

人們對太陽能的利用有什么?【專家解說】:我國太陽能資源狀況
在我國,西藏西部太陽能資源最豐富,最高達2333 KWh/㎡ (日輻射量6.4KWh/㎡ ),居世界第二位,僅次于撒哈

【專家解說】:我國太陽能資源狀況 在我國,西藏西部太陽能資源最豐富,最高達2333 KWh/㎡ (日輻射量6.4KWh/㎡ ),居世界第二位,僅次于撒哈拉大沙漠。 根據(jù)各地接受太陽總輻射量的多少,可將全國劃分為五類地區(qū)。 一類地區(qū) 為我國太陽能資源最豐富的地區(qū),年太陽輻射總量6680~8400 MJ/㎡,相當于日輻射量5.1~6.4KWh/㎡。這些地區(qū)包括寧夏北部、甘肅北部、新疆東部、青海西部和西藏西部等地。尤以西藏西部最為豐富,最高達2333 KWh/㎡(日輻射量6.4KWh/㎡),居世界第二位,僅次于撒哈拉大沙漠。 二類地區(qū) 為我國太陽能資源較豐富地區(qū),年太陽輻射總量為5850-6680 MJ/m2,相當于日輻射量4.5~5.1KWh/㎡。這些地區(qū)包括河北西北部、山西北部、內(nèi)蒙古南部、寧夏南部、甘肅中部、青海東部、西藏東南部和新疆南部等地。 三類地區(qū) 為我國太陽能資源中等類型地區(qū),年太陽輻射總量為5000-5850 MJ/m2,相當于日輻射量3.8~4.5KWh/㎡。主要包括山東、河南、河北東南部、山西南部、新疆北部、吉林、遼寧、云南、陜西北部、甘肅東南部、廣東南部、福建南部、蘇北、皖北、臺灣西南部等地。 四類地區(qū) 是我國太陽能資源較差地區(qū),年太陽輻射總量4200~5000 MJ/㎡,相當于日輻射量3.2~3.8KWh/㎡。這些地區(qū)包括湖南、湖北、廣西、江西、浙江、福建北部、廣東北部、陜西南部、江蘇北部、安徽南部以及黑龍江、臺灣東北部等地。 五類地區(qū) 主要包括四川、貴州兩省,是我國太陽能資源最少的地區(qū),年太陽輻射總量3350~4200 MJ/㎡,相當于日輻射量只有2.5~3.2KWh/㎡。 太陽能輻射數(shù)據(jù)可以從縣級氣象臺站取得,也可以從國家氣象局取得。從氣象局取得的數(shù)據(jù)是水平面的輻射數(shù)據(jù),包括:水平面總輻射,水平面直接輻射和水平面散射輻射。 從全國來看,我國是太陽能資源相當豐富的國家,絕大多數(shù)地區(qū)年平均日輻射量在4 kWh/㎡以上,西藏最高達7 kWh/㎡。 四、太陽能的利用現(xiàn)狀 1.太陽能光伏發(fā)電 世界光伏組件在過去10幾年中,平均年增長率約15%。90年代后期,發(fā)展更加迅速,最近幾年來平均年增長率超過30%。1999年光伏組件生產(chǎn)達到200兆瓦。在產(chǎn)業(yè)方面,各國一直通過擴大規(guī)模、提高自動化程度、改進技術(shù)水平、開拓市場等措施降低成本,并取得了巨大進展。商品化電池效率從10%~13%提高到13%~15%;光伏組件的生產(chǎn)成本降到每瓦3美元以下。在該方面,印度正處于領先地位,有50多家公司從事與光伏發(fā)電技術(shù)有關(guān)的制造業(yè),年生產(chǎn)組件11兆瓦,累計裝機容量約有40兆瓦。 在研究開發(fā)方面,單晶硅電池效率已達24.7%,多晶硅電池效率也突破了19.8%。碲化鎘電池效率達到15.8%,銅銦硒電池效率約為18.8%。晶硅薄膜電池的研究工作自1987年以來發(fā)展迅速,成為了世界關(guān)注的新熱點。 同時,光伏系統(tǒng)和建筑結(jié)合將使太陽能光伏發(fā)電向替代能源過渡,成為世界能源結(jié)構(gòu)組成的重要部分。 2.太陽能的熱應用 就目前來說,人類直接利用太陽能還處于初級階段,主要有太陽能集熱、太陽能熱水系統(tǒng)、太陽能暖房、太陽能發(fā)電等方式。 1)太陽能集熱器 太陽能熱水器裝置通常包括太陽能集熱器、儲水箱、管道及抽水泵其他部件。另外在冬天需要熱交換器和膨脹槽以及發(fā)電裝置以備電廠不能供電之需 。太陽能集熱器(solar collector)在太陽能熱系統(tǒng)中,接受太陽輻射并向傳熱工質(zhì)傳遞熱量的裝置。按傳熱工質(zhì)可分為液體集熱器和空氣集熱器。按采光方式可分為聚光型和聚光型集熱器兩種。另外還有一種真空集熱器:一個好的太陽能集熱器應該能用20~30年。自從大約1980年以來所制作的集熱器更應維持40~50年且很少進行維修。 2)太陽能熱水系統(tǒng) 早期最廣泛的太陽能應用即用于將水加熱,現(xiàn)今全世界已有數(shù)百萬太陽能熱水裝置。太陽能熱水系統(tǒng)主要元件包括收集器、儲存裝置及循環(huán)管路三部分。此外,可能還有輔助的能源裝置(如電熱器等)以供應無日照時使用,另外尚可能有強制循環(huán)用的水,以控制水位或控制電動部份或溫度的裝置以及接到負載的管路等。依循環(huán)方式太陽能熱水系統(tǒng)可分兩種: ○1 自然循環(huán)式: 此種型式的儲存箱置于收集器上方。水在收集器中接受太陽輻射的加熱,溫度上升,造成收集器及儲水箱中水溫不同而產(chǎn)生密度差,因此引起浮力,此一熱虹吸現(xiàn)象,促使水在除水箱及收集器中自然流動。由與密度差的關(guān)系,水流量于收集器的太陽能吸收量成正比。此種型式因不需循環(huán)水,維護甚為簡單,故已被廣泛采用。 ○2 強制循環(huán)式: 熱水系統(tǒng)用水使水在收集器與儲水箱之間循環(huán)。當收集器頂端水溫高于儲水箱底部水溫若干度時,控制裝置將啟動水,使水流動。水入口處設有止回閥以防止夜間水由收集器逆流,引起熱損失。由此種型式的熱水系統(tǒng)的流量可得知(因來自水的流量可知),容易預測性能,亦可推算于若干時間內(nèi)的加熱水量。如在同樣設計條件下,其較自然循環(huán)方式具有可以獲得較高水溫的長處,但因其必須利用水,故有水電力、維護(如漏水等)以及控制裝置時動時停,容易損壞水等問題存在。因此,除大型熱水系統(tǒng)或需要較高水溫的情形,才選擇強制循環(huán)式,一般大多用自然循環(huán)式熱水器。 3)暖房 利用太陽能作房間冬天暖房之用,在許多寒冷地區(qū)已使用多年。因寒帶地區(qū)冬季氣溫甚低,室內(nèi)必須有暖氣設備,若欲節(jié)省大量化石能源的消耗,設法應用太陽輻射熱。大多數(shù)太陽能暖房使用熱水系統(tǒng),亦有使用熱空氣系統(tǒng)。太陽能暖房系統(tǒng)是由太陽能收集器、熱儲存裝置、輔助能源系統(tǒng),及室內(nèi)暖房風扇系統(tǒng)所組成,其過程乃太陽輻射熱傳導,經(jīng)收集器內(nèi)的工作流體將熱能儲存,在供熱至房間。至輔助熱源則可裝置在儲熱裝置內(nèi)、直接裝設在房間內(nèi)或裝設于儲存裝置及房間之間等不同設計。當然亦可不用儲熱裝置而直接將熱能用到暖房的直接式暖房設計,或者將太陽能直接用于熱電或光電方式發(fā)電,在加熱房間,或透過冷暖房的熱裝置方式供作暖房使用。最常用的暖房系統(tǒng)為太陽能熱水裝置,其將熱水通至儲熱裝置之中(固體、液體或相變化的儲熱系統(tǒng)),然后利用風扇將室內(nèi)或室外空氣驅(qū)動至此儲熱裝置中吸熱,在把此熱空氣傳送至室內(nèi);或利用另一種液體流至儲熱裝置中吸熱,當熱流體流至室內(nèi),在利用風扇吹送被加熱空氣至室內(nèi),而達到暖房效果。 3.太陽能光電應用 1)太陽能電池 上世紀60年代,科學家們就已經(jīng)將太陽電池應用于空間技術(shù)——通信衛(wèi)星供電,上世紀末,在人類不斷自我反省的過程中,對于光伏發(fā)電這種如此清潔和直接的能源形式已愈加親切,不僅在空間應用,在眾多領域中也大顯身手。如:太陽能庭院燈、太陽能發(fā)電用戶系統(tǒng)、村寨供電的獨立系統(tǒng)、光伏水泵(飲水或灌溉)、通信電源、石油輸油管道陰極保護、光纜通信泵站電源、海水淡化系統(tǒng)、城鎮(zhèn)中路標、高速公路路標等。歐美等先進國家將光伏發(fā)電并入城市用電系統(tǒng)及邊遠地區(qū)自然界村落供電系統(tǒng)納入發(fā)展方向。太陽電池與建筑系統(tǒng)的結(jié)合已經(jīng)形成產(chǎn)業(yè)化趨勢。太陽能光伏玻璃幕墻組件的應用越來越多,隨著上海和北京的幾個項目進入實質(zhì)性運轉(zhuǎn),這種方式將會代替普通玻璃幕墻,它具有反射光強度小、保溫性能好等特點! 太陽電池是對光有響應并能將光能轉(zhuǎn)換成電力的器件。能產(chǎn)生光伏效應的材料有許多種,如:單晶硅,多晶硅,非晶硅,砷化鎵,硒銦銅等。它們的發(fā)電原理基本相同。 當光線照射太陽電池表面時,一部分光子被硅材料吸收;光子的能量傳遞給了硅原子,使電子發(fā)生了越遷,成為自由電子在P-N結(jié)兩側(cè)集聚形成了電位差,當外部接通電路時,在該電壓的作用下,將會有電流流過外部電路產(chǎn)生一定的輸出功率。這個過程的實質(zhì)是:光子能量轉(zhuǎn)換成電能的過程。 “硅”是我們這個星球上儲藏最豐量的材料之一。自從19世紀科學家們發(fā)現(xiàn)了晶體硅的半導體特性后,它幾乎改變了一切,甚至人類的思維,20世紀末.我們的生活中處處可見“硅”的身影和作用,晶體硅太陽電池是近15年來形成產(chǎn)業(yè)化最快。生產(chǎn)過程大致可分為五個步驟:a、提純過程 b、拉棒過程 c、切片過程 d、制電池過程 e、封裝過程。 ※太陽能電池分類 Si太陽電池 硅太陽電池是最常用的衛(wèi)星電源,從1970年起,由于空間技術(shù)的發(fā)展,各種飛行器對功率的需求越來越大,在加速發(fā)展其他類型電池的同時,世界上空間技術(shù)比較發(fā)達的美、日、歐等國家和地區(qū),都相繼開展了高效硅太陽電池的研究。以日本SHARP公司、美國的SUNPOWER公司以及歐空局為代表,在空間太陽電池的研究發(fā)展方面領先。其中,以發(fā)展背表面場(BSF)、背表面反射器(BSR)、雙層減反射膜技術(shù)為第一代高效硅太陽電池,這種類型的電池典型效率最高可以做到15%左右,目前在軌的許多衛(wèi)星應用的是這種類型的電池。 日本的SHARP公司和美國的SUNPOWER公司目前的技術(shù)水平卻為世界一流,有的技術(shù)甚至已經(jīng)移植到了地面用太陽電池的大批量生產(chǎn)。 上世紀90年代中期,空間電源工程人員發(fā)現(xiàn),雖然這種類型電池的初期效率比較高,但電池的末期效率比初期效率下降25%左右,限制了電池的進一步應用,空間電源的成本仍然不能很好地降低。 為了改變這種情況,以SHARP為首的研究機構(gòu)提出了雙邊結(jié)電池結(jié)構(gòu),這種電池的出現(xiàn)有效地提高了電池的末期效率,并在HES、HES-1衛(wèi)星上獲得了實際應用。 另外研究人員還發(fā)現(xiàn),衛(wèi)星對電池陣位置的要求比較苛刻,如果太陽電池陣不對日定向或?qū)θ斩ㄏ虿畹榷紩绊懙叫l(wèi)星電源的功率,這在一定程度上也限制了衛(wèi)星整體系統(tǒng)的配置。比如空間站這樣復雜的飛行器,有的電池幾乎不能完全保證其充足的太陽角,因而就需要高效電池來滿足要求。雖然目前已經(jīng)部分應用了常規(guī)的高效電池,但電池的高的α吸收系數(shù)、有限的空間和重量的需要使其仍然不能滿足空間系統(tǒng)大規(guī)模功率的需要。傳統(tǒng)的電池結(jié)構(gòu)仍然受到很大程度的限制。在這種情況下,俄羅斯在研究高效硅電池初期就側(cè)重于提高電池的末期效率為主,在結(jié)合電池研究方面提出了雙面電池的構(gòu)想并獲得了成功,真正做到了高效長壽命和低成本。 GaAs太陽電池 隨著空間科學和技術(shù)的發(fā)展,對空間電源提出了更高的要求。80年代初期,前蘇聯(lián)、美國、英國、意大利等國開始研究GaAs基系太陽電池。80年代中期,GaAs太陽電池已經(jīng)用于空間系統(tǒng),如1986年前蘇聯(lián)發(fā)射的“和平號”空間站,裝備了10KW的GaAs太陽電池,單位面積比功率達到180W/㎡。8年后,電池陣輸出功率總衰退不大于15%。 GaAs基系太陽電池經(jīng)歷了從LPE到MOVPE,從同質(zhì)外延到異質(zhì)外延,從單結(jié)到多結(jié)疊層結(jié)構(gòu)發(fā)展變化,其效率不斷提高。從最初的16%增加到25%,工業(yè)生產(chǎn)規(guī)模年產(chǎn)達100KW以上,并在空間系統(tǒng)得到廣泛的應用。更高的效率減小了陣列的大小和重量,增加了火箭的裝載量,減少火箭燃料消耗,因此整個衛(wèi)星電源系統(tǒng)的費用更低。 薄膜太陽電池 為適應空間應用需求,國際上紛紛制訂各自的薄膜太陽電池計劃(如NASA,主要目標在于提高比功率和降低發(fā)射裝載容量),提出解決措施: (1)研制超輕柔性襯底薄膜太陽電池; (2)研制多結(jié)薄膜太陽電池。目前,國際發(fā)展趨勢主要涉及非晶硅太陽電池、銅銦(鎵)硒(CuInGaSe2)太陽電池和碲化鎘(CdTe)太陽電池。經(jīng)過數(shù)年的努力,其效率達到15~20%(AM0)。 另一方面,為展開柔性薄膜太陽電池的研制(展開式、折疊式、套桶式、卷廉式)的設計與應用提供可能。自90年代后期,國外已開展了以聚合物為襯底薄膜太陽電池的研制,并取得一定的進展。薄膜太陽電池是獲得高效率、長壽命、高可靠、低成本的重要途徑之一。主要包括:a-Si及其合金、CuInSe2 及其合金、以及CdTe三種材料的薄膜太陽電池。 聚光太陽電池 一般認為,現(xiàn)代聚光PV開始于上世紀70年代末悉尼國家實驗室,采用了點聚焦菲涅爾透鏡硅電池雙軸跟蹤結(jié)構(gòu),隨后并研制了幾個原型。在上世紀80年代,很多研究機構(gòu)進行了一系列成功的實驗,在聚光技術(shù)方面取得了突破性進展,如菲涅爾透鏡、棱形玻璃蓋片等。到上世紀90年代中期,線聚焦Fresenel透鏡聚光陣技術(shù)已經(jīng)成功地用于SCARLET太陽電池陣,電池為GaInP/GaAs/Ge三結(jié)電池,聚光陣的功率密度大于200 W/㎡,比功率大于45 W/kg。線聚焦Fresenel透鏡聚光陣已經(jīng)用于DEEPSPACE-1。 由于三結(jié)GaAs太陽電池有很好的高溫特性(為高電壓低電流器件),通過聚光將顯著提高電池電流輸出,特別在實現(xiàn)高倍聚光后,可獲得更高的功率輸出。因此,以三結(jié)砷化鎵太陽電池為主要部件的聚光太陽電池以其高效率(可達到40%以上)、高溫性能好(工作溫度每升高1度性能僅下降0.2%,可在200?C情況下正常工作,聚光倍數(shù)可達500倍以上)等特點被國際公認為最有發(fā)展前途和最具商用價值的新一代太陽能器件。 太陽能硒光電池 日本制成了世界上第一架太陽能照相機,重量僅有475克,機內(nèi)裝有先進的太陽能電池系統(tǒng),其蓄電池可連續(xù)使用4年。美國一家公司生產(chǎn)了一種新型的135太陽能照相機,它的光圈、速度均由微電腦自動控制,電力則由太陽能硒光電池提供,只要有光線就能供電使用。 太陽能卷曲充電器 SolarRolls,即使在山上也能隨意的給你的數(shù)碼充電。這個充電器最獨特的地方就是它采用卷軸式的設計,全部展開就像一塊布,還能卷起來放在一個管子里,經(jīng)久耐用又防水。根據(jù)使用環(huán)境的不同,SolarRolls一共有三種型號:SolarRoll 14,展開后長57英寸,寬12英寸,價格為479美元。SolarRoll 9,展開后有40英寸,價格為349美元。SolarRoll 4.5展開只有22英寸長,我們只用這個4.5的就足夠給自己的手機或者數(shù)碼相機充電。 ※空間太陽電池主要性能 第一個空間太陽電池載于1958年發(fā)射的Vangtuard I,體裝式結(jié)構(gòu),單晶Si襯底,效率約10%(28℃)。1970年后,人們改善了電池結(jié)構(gòu),采用BSF、光刻技術(shù)及更好減反射膜等技術(shù),使電池的效率增加到14%。在70年代和80年代,地面太陽電池大約每5.5年全球產(chǎn)量翻番;而空間太陽電池在空間環(huán)境下的性能,如抗輻射性能等得到了較大改善。由于80年代太陽電池的理論得到迅速發(fā)展,極大地促進了地面和空間太陽電池性能的改善。到了90年代,薄膜電池和Ⅲ-Ⅴ電池的研究發(fā)展很快,而且聚光陣結(jié)構(gòu)也變得更經(jīng)濟,空間太陽電池市場競爭十分激烈。在繼續(xù)研究更高性能的太陽電池,主要有兩種途徑:研究聚光電池和多帶隙電池。 電池效率 空間太陽電池通常具有較高的效率,以便在空間發(fā)射的重量、體積受限制的條件下,能獲得特定的功率輸出。特別在一些特定的發(fā)射任務中,如微小衛(wèi)星(重量在50~100公斤)上應用,要求單位面積或單位重量的比功率更高。 抗輻照性能 空間太陽電池在地球大氣層外工作,必然會受到高能帶電粒子的輻照,引起電池性能的衰減,主要原因是由于電子或質(zhì)子輻射使少數(shù)載流子的擴散長度減小。其光電參數(shù)衰減的程度取決于太陽電池的材料和結(jié)構(gòu)。還有反向偏壓、低溫和熱效應等因素也是電池性能衰減的重要原因,尤其對疊層太陽電池,由于熱脹系數(shù)顯著不同,電池性能衰減可能更嚴重。 可靠性 光伏電源的可靠性對整個發(fā)射任務的成功起關(guān)鍵作用,與地面應用相比,太陽電池/陣的費用高低并不重要,因為空間電源系統(tǒng)的平衡費用更高,可靠性是最重要的??臻g太陽電池陣必須經(jīng)過一系列機械、熱學、電學等苛刻的可靠性檢驗。 2)太陽能路燈 太陽能路燈是一種利用太陽能作為能源的路燈,因其具有不受供電影響,不用開溝埋線,不消耗常規(guī)電能,只要陽光充足就可以就地安裝等特點,因此受到人們的廣泛關(guān)注,又因其不污染環(huán)境,而被稱為綠色環(huán)保產(chǎn)品。太陽能路燈即可用于城鎮(zhèn)公園、道路、草坪的照明,又可用于人口分布密度較小,交通不便經(jīng)濟不發(fā)達、缺乏常規(guī)燃料,難以用常規(guī)能源發(fā)電,但太陽能資源豐富的地區(qū),以解決這些地區(qū)人們的家用照明問題。目前,一種風能與太陽能相結(jié)合的新型路燈在天津市南開區(qū)梅苑路試運行。白天路燈上安裝的風能和太陽能收集裝置將風能和太陽能轉(zhuǎn)化成電能,儲存到蓄電池里,夜間蓄電池給路燈供電。 五、太陽能利用的優(yōu)缺點 優(yōu)點:? (1)普遍:太陽光普照大地,無論陸地或海洋,無論高山或島嶼,都處處皆有,可直接開發(fā)和利用,且勿須開采和運輸。? (2)無害:開發(fā)利用太陽能不會污染環(huán)境,它是最清潔的能源之一,在環(huán)境污染越來越嚴重的今天,這一點是極其寶貴的。? (3)巨大:每年到達地球表面上的太陽輻射能約相當于130萬億t標煤,其總量屬現(xiàn)今世界上可以開發(fā)的最大能源。? (4)長久:根據(jù)目前太陽產(chǎn)生的核能速率估算,氫的貯量足夠維持上百億年,而地球的壽命也約為幾十億年,從這個意義上講,可以說太陽的能量是用之不竭的。? 缺點:? (1)分散性:到達地球表面的太陽輻射的總量盡管很大,但是能流密度很低。平均說來,北回歸線附近,夏季在天氣較為晴朗的情況下,正午時太陽輻射的輻照度最大,在垂直于太陽光方向1平方米面積上接收到的太陽能平均有1000W左右;若按全年日夜平均,則只有200W左右。而在冬季大致只有一半,陰天一般只有1/5左右,這樣的能流密度是很低的。因此,在利用太陽能時,想要得到一定的轉(zhuǎn)換功率,往往需要面積相當大的一套收集和轉(zhuǎn)換設備,造價較高。? (2)不穩(wěn)定性:由于受到晝夜、季節(jié)、地理緯度和海拔高度等自然條件的限制以及晴、陰、云、雨等隨機因素的影響,所以,到達某一地面的太陽輻照度既是間斷的,又是極不穩(wěn)定的,這給太陽能的大規(guī)模應用增加了難度。為了使太陽能成為連續(xù)、穩(wěn)定的能源,從而最終成為能夠與常規(guī)能源相競爭的替代能源,就必須很好地解決蓄能問題,即把晴朗白天的太陽輻射能盡量貯存起來,以供夜間或陰雨天使用,但目前蓄能也是太陽能利用中較為薄弱的環(huán)節(jié)之一。? (3)效率低和成本高:目前太陽能利用的發(fā)展水平,有些方面在理論上是可行的,技術(shù)上也是成熟的。但有的太陽能利用裝置,因為效率偏低,成本較高,總的來說,經(jīng)濟性還不能與常規(guī)能源相競爭。在今后相當一段時期內(nèi),太陽能利用的進一步發(fā)展,主要受到經(jīng)濟性的制約。?