LED光源已在眾多汽車應(yīng)用中迅速普及。ROHM憑借高效的LED光源驅(qū)動(dòng)技術(shù),打造了用于尾燈、背光燈以及前照燈的LED驅(qū)動(dòng)器等豐">

首頁 > 行業(yè)資訊

介紹ROHM開發(fā)的最新LED背光燈用驅(qū)動(dòng)器技術(shù)

來源:新能源網(wǎng)
時(shí)間:2015-08-04 19:10:50
熱度:

介紹ROHM開發(fā)的最新LED背光燈用驅(qū)動(dòng)器技術(shù)<前言>LED光源已在眾多汽車應(yīng)用中迅速普及。ROHM憑借高效的LED光源驅(qū)動(dòng)技術(shù),打造了用于尾燈、背光燈以及前照燈的LED驅(qū)動(dòng)器等豐

<前言>   LED光源已在眾多汽車應(yīng)用中迅速普及。ROHM憑借高效的LED光源驅(qū)動(dòng)技術(shù),打造了用于尾燈、背光燈以及前照燈的LED驅(qū)動(dòng)器等豐富的產(chǎn)品陣容。在此,將為您介紹用于背光燈的LED驅(qū)動(dòng)器。   <車載背光燈用LED驅(qū)動(dòng)器的開發(fā)>   近年來,在車載用顯示器領(lǐng)域,為滿足有害物質(zhì)限制要求,使用水銀的CCFL背光燈正在被LED背光燈迅速取代。另外,儀表盤、汽車導(dǎo)航、音響顯示、后座娛樂等各種車載用顯示器正朝多樣化、大型化方向發(fā)展。在這種趨勢(shì)下,對(duì)于增加LED燈數(shù)量以及高亮度、高調(diào)光率的要求日益高漲。ROHM為滿足LED燈數(shù)量增加的這種發(fā)展趨勢(shì)需求,將實(shí)現(xiàn)高耐壓的升降壓DC/DC轉(zhuǎn)換器、可多燈驅(qū)動(dòng)小功率LED且實(shí)現(xiàn)了高調(diào)光率的電流驅(qū)動(dòng)器電路內(nèi)置于一枚芯片,擴(kuò)充了LED驅(qū)動(dòng)器產(chǎn)品陣容。   接下來介紹ROHM開發(fā)的背光燈用LED驅(qū)動(dòng)器BD81A34EFV-M。   BD81A34EFV-M大致由DC/DC轉(zhuǎn)換器部、電流驅(qū)動(dòng)器部、保護(hù)電路部三個(gè)功能塊組成(圖1)。 [圖1] BD81A34EFV-M的框圖   作為背光燈的驅(qū)動(dòng),首先是由DC/DC轉(zhuǎn)換器,生成一定的電壓。將DC/DC轉(zhuǎn)換器的輸出連接到面板的LED陽極側(cè),由LED的陰極側(cè)向LED驅(qū)動(dòng)器灌入恒定電流,使LED發(fā)光。為支持小功率的多燈LED驅(qū)動(dòng),LED的通道數(shù)(可連接的列數(shù))設(shè)計(jì)為4。   通過控制DC/DC轉(zhuǎn)換器的開關(guān)占空比,使輸出達(dá)到高于LED陽極引腳的電平,其中包含了鏈接于電流驅(qū)動(dòng)器的LED段數(shù)部分,也就是由LED產(chǎn)生的VF,通過LED驅(qū)動(dòng)器的誤差放大器進(jìn)行反饋控制,使連接于IC的LED陰極引腳(LED1~4引腳)為1.0V。通過上述控制,電流驅(qū)動(dòng)器部即可保持LED電流恒定。作為面板的亮度調(diào)整之用,輸出的電流具有PWM-dimming(PWM調(diào)光)功能。LED電流的占空比可與外部的PWM信號(hào)輸入同步變化。不僅如此,BD81A34EFV-M還搭載LED開路與短路故障保護(hù)、LED接地故障保護(hù)、DC/DC轉(zhuǎn)換器輸出過流與過壓保護(hù)功能,完善的保護(hù)電路非常有助于提高面板的可靠性。   上面介紹了DC/DC轉(zhuǎn)換器電路、電流驅(qū)動(dòng)器電路,接下來按順序介紹ROHM的車載LED驅(qū)動(dòng)器的特點(diǎn)---防閃爍電路。   <升降壓DC/DC轉(zhuǎn)換器>   面對(duì)車載特有的電池電壓波動(dòng)和多樣化的LED燈數(shù),以升壓方式和降壓方式很難進(jìn)行LED的閃爍控制與平臺(tái)設(shè)計(jì),要滿足市場(chǎng)所要求的高可靠性與縮短開發(fā)周期之間的平衡實(shí)屬不易。因此,為了不依賴電池電壓、可以始終穩(wěn)定供給DC/DC轉(zhuǎn)換器輸出電壓,ROHM采用了一種稱為“REGSPIC結(jié)構(gòu)”的獨(dú)有升降壓方式。下面介紹REGSPIC結(jié)構(gòu)與一般的升降壓方式所用的SEPIC結(jié)構(gòu)相比所具有兩個(gè)優(yōu)點(diǎn)。  ?、?減少外置部件   圖2表示SEPIC與REGSPIC的電路構(gòu)成。由圖2可見,REGSPIC結(jié)構(gòu)中,面積占有率最高的線圈較少,可實(shí)現(xiàn)小型化和低成本化。另外,減少了電感,還可提高由線圈損耗部分相應(yīng)的效率。 [圖2] SEPIC和REGSPIC的電路構(gòu)成  ?、?實(shí)現(xiàn)高可靠性   圖2的SEPIC結(jié)構(gòu)中,C1對(duì)于輸出電壓像電荷泵一樣工作,因此,Q1需要達(dá)到DC/DC轉(zhuǎn)換器輸出電壓   (VOUT)+電池電壓的耐壓水平。另一方面,REGSPIC結(jié)構(gòu)中,由于耐壓達(dá)到DC/DC轉(zhuǎn)換器輸出電壓和電池電壓二者較高一方以上即可,因此,REGSPIC結(jié)構(gòu)由低耐壓部件組成,更容易控制。   另外,Q2不僅用于升降壓控制,還可作為L(zhǎng)ED陽極和二極管等外置部件接地短路時(shí)切斷與電池間通路的開關(guān)使用,因此,發(fā)生異常時(shí)可保護(hù)外置部件,有助于實(shí)現(xiàn)更高可靠性。而SEPIC結(jié)構(gòu)中,為切斷與電池間的通路,將Q3僅作為開關(guān)使用。   <高調(diào)光率的電流驅(qū)動(dòng)器>   為滿足車載面板向高亮度化方向發(fā)展的趨勢(shì)需求,ROHM已完成了高調(diào)光率LED驅(qū)動(dòng)器BD81A34EFV-M的技術(shù)開發(fā)。下面針對(duì)面板的高亮度化為何需要更高的調(diào)光率進(jìn)行說明。面板亮度雖然可以更高,但所要求的最低亮度水平幾乎不變??紤]到輸出在暗處等人眼不覺疲勞的低亮度的情況,如果最高亮度(調(diào)光率100%)低一些,即使低調(diào)光率也可輸出低亮度,但近年來,面板規(guī)格一般最高亮度都非常高,因此,低亮度輸出時(shí)需要具備高調(diào)光率。   BD81A34EFV-M為了實(shí)現(xiàn)高調(diào)光率,利用ROHM獨(dú)有的技術(shù)提高了電流驅(qū)動(dòng)器輸出LED的響應(yīng)性能。根據(jù)外部PWM輸入占空比對(duì)LED電流進(jìn)行開關(guān)控制。此時(shí),在PWM信號(hào)低電平時(shí)關(guān)斷電流驅(qū)動(dòng)器電路,在高電平時(shí)導(dǎo)通電流驅(qū)動(dòng)器電路,根據(jù)ON/OFF區(qū)間的時(shí)間比調(diào)整LED電流。輸入PWM與輸出電流完全同步并時(shí)序一致是理想的結(jié)果,只要能實(shí)現(xiàn)這一點(diǎn),即可實(shí)現(xiàn)高亮度。而實(shí)際上,從輸入PWM信號(hào)到電流輸出會(huì)產(chǎn)生電路延遲,由于該延遲,使得無法生成該時(shí)間寬度以內(nèi)的脈沖。   電流驅(qū)動(dòng)器電路中搭載了電流控制用放大器,但按以往的PWM調(diào)光方式,在電流驅(qū)動(dòng)器電路OFF→ON時(shí)點(diǎn),作為該內(nèi)部放大器的啟動(dòng)時(shí)間會(huì)產(chǎn)生數(shù)μs 指令的電路延遲。隨著市場(chǎng)對(duì)調(diào)光率的要求越來越高,該電路延遲已無法忽視。因此,ROHM搭載的PWM調(diào)光電路,使放大器的啟動(dòng)時(shí)間降到最低,從而實(shí)現(xiàn)了更高調(diào)光率。   具體如圖3所示,電流驅(qū)動(dòng)放大器擁有LED電流輸出用的反饋電路和另一條反饋電路。 [圖3] 電流驅(qū)動(dòng)放大器的反饋電路   這兩條反饋通路由各SW進(jìn)行切換。在PWM=High(LED為ON)區(qū)間,驅(qū)動(dòng)LED電流輸出用的反饋電路(圖3反饋電路1),由LED引腳灌入LED電流。在PWM=Low(LED為OFF)區(qū)間,驅(qū)動(dòng)另一條反饋電路(圖3反饋電路2),由內(nèi)部恒定電壓VREG產(chǎn)生電流。通過進(jìn)行這樣的控制,LED電流雖然是關(guān)斷的,但電流驅(qū)動(dòng)放大器始終處于驅(qū)動(dòng)狀態(tài),PWM=Low→High時(shí)可平穩(wěn)生成LED電流。由于反饋通路2的電流I2已設(shè)定為數(shù)μA,因此,本電路結(jié)構(gòu)的功耗增加量已達(dá)到可以忽視的水平。   圖4為L(zhǎng)ED電流在有無與輸出不同的反饋通路時(shí)對(duì)PWM信號(hào)的跟隨性如何變化的比較數(shù)據(jù)。 [圖4] 有無與輸出不同的反饋電路的LED電流跟隨性比較   在沒有另外的反饋通路時(shí),從PWM=OFF→ON時(shí)點(diǎn)開始,到生成LED電流會(huì)產(chǎn)生約10μs的延遲時(shí)間。與此相比,在有另外的反饋通路時(shí),幾乎沒有延遲時(shí)間,可跟隨到最小達(dá)1μs的PWM脈沖寬度。假設(shè)PWM頻率為100Hz,那么如果是1μs的脈沖寬度,則可實(shí)現(xiàn)10000:1的調(diào)光率。綜上所述,BD81A34EFV-M實(shí)現(xiàn)了高調(diào)光率,非常有助于面板的高亮度化。   <防止LED閃爍的DC/DC轉(zhuǎn)換器輸出電壓放電電路>   將DC/DC轉(zhuǎn)換器輸出作為L(zhǎng)ED陽極控制LED時(shí)的問題在于,從DC/DC轉(zhuǎn)換器的OFF狀態(tài)再啟動(dòng)時(shí)會(huì)出現(xiàn)LED閃爍現(xiàn)象。   當(dāng)因向LED驅(qū)動(dòng)器輸入啟動(dòng)OFF信號(hào)以及異常檢測(cè)時(shí)的保護(hù)動(dòng)作等而關(guān)斷DC/DC轉(zhuǎn)換器的開關(guān)輸出時(shí),輸出電容里會(huì)有殘存電荷。殘存電荷通過DC/DC轉(zhuǎn)換器輸出電壓反饋用的電阻分壓電路(圖5 ROVP1、ROVP2)進(jìn)行放電。但是,放電時(shí)間達(dá)數(shù)秒之長(zhǎng),因此,必須考慮到在這種電荷殘留狀態(tài)下再啟動(dòng)的情況。在這種情況下,殘留電荷通過LED元件進(jìn)行放電,之后進(jìn)行正常的啟動(dòng)控制。這種瞬間放電表現(xiàn)為L(zhǎng)ED的閃爍。 [圖5] 防LED閃變電路   傳統(tǒng)上,為防止這種閃爍,一般選擇以下兩種方法之一。第一種方法是如圖5-1所示,給DC/DC轉(zhuǎn)換器輸出追加外置開關(guān)元件,在電路OFF時(shí)強(qiáng)制放電。這種方法可以避免再啟動(dòng)時(shí)的閃爍,但需要增加開關(guān)元件和限流電阻等,部件數(shù)量會(huì)增多。   第二種方法是如圖5-2所示,降低過壓保護(hù)用電阻值。降低電阻分壓電路的電阻值,促進(jìn)殘留電荷的放電。這種方法的問題是正常工作時(shí)的功耗會(huì)增加。   因此,BD81A34EFV-M如圖5-3所示,在IC中內(nèi)置了防閃爍用輸出放電電路。該電路使輸出電荷的放電僅需數(shù)ms指令即可完成。而且,還不會(huì)增加外置部件數(shù)量和功耗。例如,在BD81A34EFV-M的外置部件推薦值Cout=20uF、ROVP1=360kΩ、ROVP2=30kΩ的條件下,設(shè)DC/DC轉(zhuǎn)換器輸出電壓(Vout)為30V時(shí),   無輸出放電電路:放電時(shí)間=約7.8s   有輸出放電電路:放電時(shí)間=約1.5ms   可大幅縮短放電時(shí)間,并可防止因此導(dǎo)致的LED閃爍。   <未來展望>   未來,高性能化會(huì)進(jìn)一步發(fā)展,對(duì)此,ROHM會(huì)繼續(xù)推進(jìn)內(nèi)置通信功能、多通道LED驅(qū)動(dòng)器的開發(fā)。通過內(nèi)置通信功能,不同的型號(hào)可通過通信設(shè)定不同的LED電流、電壓、保護(hù)功能等,每種型號(hào)無需創(chuàng)建驅(qū)動(dòng)電路,可推進(jìn)平臺(tái)化發(fā)展。不僅如此,通過搭載Diagnostic(診斷)功能,實(shí)時(shí)監(jiān)測(cè)LED電流及異常狀態(tài)等并反饋到微控制器側(cè)成為可能,可實(shí)施適合不同情況的控制,提升設(shè)備的安全性能。另外,通過多通道化,使驅(qū)動(dòng)各種燈類(DRL、轉(zhuǎn)向燈、位置燈等) 的驅(qū)動(dòng)電路可集成于1枚IC,從而可靈活應(yīng)對(duì)所需的通道數(shù)。ROHM將會(huì)繼續(xù)開發(fā)滿足客戶需求的高性能IC,不斷開發(fā)有助于汽車節(jié)能與高性能的IC。